Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from diffusers import DiffusionPipeline | |
from typing import List, Optional, Union, Dict, Any | |
from diffusers import logging | |
from diffusers.utils.torch_utils import randn_tensor | |
from lvdm.models.ddpm3d import LatentDiffusion | |
from scheduler.t2v_turbo_scheduler import T2VTurboScheduler | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
class T2VTurboVC2Pipeline(DiffusionPipeline): | |
def __init__( | |
self, | |
pretrained_t2v: LatentDiffusion, | |
scheduler: T2VTurboScheduler, | |
model_config: Dict[str, Any] = None, | |
): | |
super().__init__() | |
self.register_modules( | |
pretrained_t2v=pretrained_t2v, | |
scheduler=scheduler, | |
) | |
self.vae = pretrained_t2v.first_stage_model | |
self.unet = pretrained_t2v.model.diffusion_model | |
self.text_encoder = pretrained_t2v.cond_stage_model | |
self.model_config = model_config | |
self.vae_scale_factor = 8 | |
def _encode_prompt( | |
self, | |
prompt, | |
device, | |
num_videos_per_prompt, | |
prompt_embeds: None, | |
): | |
r""" | |
Encodes the prompt into text encoder hidden states. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
prompt to be encoded | |
device: (`torch.device`): | |
torch device | |
num_videos_per_prompt (`int`): | |
number of images that should be generated per prompt | |
prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
""" | |
if prompt_embeds is None: | |
prompt_embeds = self.text_encoder(prompt) | |
prompt_embeds = prompt_embeds.to(device=device) | |
bs_embed, seq_len, _ = prompt_embeds.shape | |
# duplicate text embeddings for each generation per prompt, using mps friendly method | |
prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1) | |
prompt_embeds = prompt_embeds.view( | |
bs_embed * num_videos_per_prompt, seq_len, -1 | |
) | |
# Don't need to get uncond prompt embedding because of LCM Guided Distillation | |
return prompt_embeds | |
def prepare_latents( | |
self, | |
batch_size, | |
num_channels_latents, | |
frames, | |
height, | |
width, | |
dtype, | |
device, | |
generator, | |
latents=None, | |
): | |
shape = ( | |
batch_size, | |
num_channels_latents, | |
frames, | |
height // self.vae_scale_factor, | |
width // self.vae_scale_factor, | |
) | |
if latents is None: | |
latents = randn_tensor( | |
shape, generator=generator, device=device, dtype=dtype | |
) | |
else: | |
latents = latents.to(device) | |
# scale the initial noise by the standard deviation required by the scheduler | |
latents = latents * self.scheduler.init_noise_sigma | |
return latents | |
def get_w_embedding(self, w, embedding_dim=512, dtype=torch.float32): | |
""" | |
see https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298 | |
Args: | |
timesteps: torch.Tensor: generate embedding vectors at these timesteps | |
embedding_dim: int: dimension of the embeddings to generate | |
dtype: data type of the generated embeddings | |
Returns: | |
embedding vectors with shape `(len(timesteps), embedding_dim)` | |
""" | |
assert len(w.shape) == 1 | |
w = w * 1000.0 | |
half_dim = embedding_dim // 2 | |
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) | |
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) | |
emb = w.to(dtype)[:, None] * emb[None, :] | |
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) | |
if embedding_dim % 2 == 1: # zero pad | |
emb = torch.nn.functional.pad(emb, (0, 1)) | |
assert emb.shape == (w.shape[0], embedding_dim) | |
return emb | |
def __call__( | |
self, | |
prompt: Union[str, List[str]] = None, | |
height: Optional[int] = 320, | |
width: Optional[int] = 512, | |
frames: int = 16, | |
fps: int = 16, | |
guidance_scale: float = 7.5, | |
motion_gs: float = 0.1, | |
use_motion_cond: bool = False, | |
percentage: float = 0.3, | |
num_videos_per_prompt: Optional[int] = 1, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
num_inference_steps: int = 4, | |
lcm_origin_steps: int = 50, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
output_type: Optional[str] = "pil", | |
): | |
unet_config = self.model_config["params"]["unet_config"] | |
# 0. Default height and width to unet | |
frames = self.pretrained_t2v.temporal_length if frames < 0 else frames | |
# 2. Define call parameters | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
device = self._execution_device | |
# do_classifier_free_guidance = guidance_scale > 0.0 # In LCM Implementation: cfg_noise = noise_cond + cfg_scale * (noise_cond - noise_uncond) , (cfg_scale > 0.0 using CFG) | |
# 3. Encode input prompt | |
prompt_embeds = self._encode_prompt( | |
prompt, | |
device, | |
num_videos_per_prompt, | |
prompt_embeds=prompt_embeds, | |
) | |
# 4. Prepare timesteps | |
self.scheduler.set_timesteps(num_inference_steps, lcm_origin_steps) | |
timesteps = self.scheduler.timesteps | |
# 5. Prepare latent variable | |
num_channels_latents = unet_config["params"]["in_channels"] | |
latents = self.prepare_latents( | |
batch_size * num_videos_per_prompt, | |
num_channels_latents, | |
frames, | |
height, | |
width, | |
prompt_embeds.dtype, | |
device, | |
generator, | |
latents, | |
) | |
bs = batch_size * num_videos_per_prompt | |
context = {"context": torch.cat([prompt_embeds.to(self.dtype)], 1), "fps": fps} | |
# 6. Get Guidance Scale Embedding | |
w = torch.tensor(guidance_scale).repeat(bs) | |
w_embedding = self.get_w_embedding(w, embedding_dim=256).to(device) | |
context["timestep_cond"] = w_embedding.to(self.dtype) | |
ms_t_threshold = self.scheduler.config.num_train_timesteps * (1 - percentage) | |
# 7. LCM MultiStep Sampling Loop: | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
ts = torch.full((bs,), t, device=device, dtype=torch.long) | |
if use_motion_cond: | |
motion_gs_pt = torch.tensor(motion_gs).repeat(bs) | |
if t < ms_t_threshold: | |
motion_gs_pt = torch.zeros_like(motion_gs_pt) | |
motion_gs_embedding = self.get_w_embedding( | |
motion_gs_pt, embedding_dim=256, dtype=self.dtype | |
).to(device) | |
context["motion_cond"] = motion_gs_embedding | |
# model prediction (v-prediction, eps, x) | |
model_pred = self.unet(latents, ts, **context) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents, denoised = self.scheduler.step( | |
model_pred, i, t, latents, generator=generator, return_dict=False | |
) | |
progress_bar.update() | |
if not output_type == "latent": | |
videos = self.pretrained_t2v.decode_first_stage_2DAE(denoised) | |
else: | |
videos = denoised | |
return videos | |