Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,401 Bytes
5bec700 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
import os
import uuid
from omegaconf import OmegaConf
import spaces
import random
import imageio
import torch
import torchvision
import gradio as gr
import numpy as np
from gradio.components import Textbox, Video
from utils.common_utils import load_model_checkpoint
from utils.utils import instantiate_from_config
from scheduler.t2v_turbo_scheduler import T2VTurboScheduler
from pipeline.t2v_turbo_vc2_pipeline import T2VTurboVC2Pipeline
DESCRIPTION = """# T2V-Turbo π
Our model is distilled from [VideoCrafter2](https://ailab-cvc.github.io/videocrafter2/).
T2V-Turbo learns a LoRA on top of the base model by aligning to the reward feedback from [HPSv2.1](https://github.com/tgxs002/HPSv2/tree/master) and [InternVid2 Stage 2 Model](https://huggingface.co/OpenGVLab/InternVideo2-Stage2_1B-224p-f4).
T2V-Turbo-v2 optimizes the training techniques by finetuning the full base model and further aligns to [CLIPScore](https://huggingface.co/laion/CLIP-ViT-H-14-laion2B-s32B-b79K)
T2V-Turbo trains on pure WebVid-10M data, whereas T2V-Turbo-v2 carufully optimizes different learning objectives with a mixutre of VidGen-1M and WebVid-10M data.
Moreover, T2V-Turbo-v2 supports to distill motion priors from the training videos.
[Project page for T2V-Turbo](https://t2v-turbo.github.io) π
[Project page for T2V-Turbo-v2](https://t2v-turbo-v2.github.io) π«
"""
if torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CUDA π</p>"
elif hasattr(torch, "xpu") and torch.xpu.is_available():
DESCRIPTION += "\n<p>Running on XPU π€</p>"
else:
DESCRIPTION += "\n<p>Running on CPU π₯Ά This demo does not work on CPU.</p>"
MAX_SEED = np.iinfo(np.int32).max
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def save_video(video_array, video_save_path, fps: int = 16):
video = video_array.detach().cpu()
video = torch.clamp(video.float(), -1.0, 1.0)
video = video.permute(1, 0, 2, 3) # t,c,h,w
video = (video + 1.0) / 2.0
video = (video * 255).to(torch.uint8).permute(0, 2, 3, 1)
torchvision.io.write_video(
video_save_path, video, fps=fps, video_codec="h264", options={"crf": "10"}
)
example_txt = [
"An astronaut riding a horse.",
"Darth vader surfing in waves.",
"light wind, feathers moving, she moves her gaze, 4k",
"a girl floating underwater.",
"Pikachu snowboarding.",
"Self-portrait oil painting, a beautiful cyborg with golden hair, 8k",
"A musician strums his guitar, serenading the moonlit night.",
]
examples = [[i, 7.5, 0.5, 16, 16, 0, True, "bf16"] for i in example_txt]
@spaces.GPU(duration=120)
@torch.inference_mode()
def generate(
prompt: str,
guidance_scale: float = 7.5,
percentage: float = 0.5,
num_inference_steps: int = 4,
num_frames: int = 16,
seed: int = 0,
randomize_seed: bool = False,
param_dtype="bf16",
motion_gs: float = 0.05,
fps: int = 8,
):
seed = randomize_seed_fn(seed, randomize_seed)
torch.manual_seed(seed)
if param_dtype == "bf16":
dtype = torch.bfloat16
unet.dtype = torch.bfloat16
elif param_dtype == "fp16":
dtype = torch.float16
unet.dtype = torch.float16
elif param_dtype == "fp32":
dtype = torch.float32
unet.dtype = torch.float32
else:
raise ValueError(f"Unknown dtype: {param_dtype}")
pipeline.unet.to(device, dtype)
pipeline.text_encoder.to(device, dtype)
pipeline.vae.to(device, dtype)
pipeline.to(device, dtype)
result = pipeline(
prompt=prompt,
frames=num_frames,
fps=fps,
guidance_scale=guidance_scale,
motion_gs=motion_gs,
use_motion_cond=True,
percentage=percentage,
num_inference_steps=num_inference_steps,
lcm_origin_steps=200,
num_videos_per_prompt=1,
)
torch.cuda.empty_cache()
tmp_save_path = "tmp.mp4"
root_path = "./videos/"
os.makedirs(root_path, exist_ok=True)
video_save_path = os.path.join(root_path, tmp_save_path)
save_video(result[0], video_save_path, fps=fps)
display_model_info = f"Video size: {num_frames}x320x512, Sampling Step: {num_inference_steps}, Guidance Scale: {guidance_scale}"
return video_save_path, prompt, display_model_info, seed
block_css = """
#buttons button {
min-width: min(120px,100%);
}
"""
if __name__ == "__main__":
device = torch.device("cuda:0")
config = OmegaConf.load("configs/inference_t2v_512_v2.0.yaml")
model_config = config.pop("model", OmegaConf.create())
pretrained_t2v = instantiate_from_config(model_config)
pretrained_t2v = load_model_checkpoint(pretrained_t2v, "checkpoints/VideoCrafter2_model.ckpt")
unet_config = model_config["params"]["unet_config"]
unet_config["params"]["use_checkpoint"] = False
unet_config["params"]["time_cond_proj_dim"] = 256
unet_config["params"]["motion_cond_proj_dim"] = 256
unet = instantiate_from_config(unet_config)
unet.load_state_dict(torch.load("checkpoints/unet_mg.pt", map_location=device))
unet.eval()
pretrained_t2v.model.diffusion_model = unet
scheduler = T2VTurboScheduler(
linear_start=model_config["params"]["linear_start"],
linear_end=model_config["params"]["linear_end"],
)
pipeline = T2VTurboVC2Pipeline(pretrained_t2v, scheduler, model_config)
pipeline.to(device)
demo = gr.Interface(
fn=generate,
inputs=[
Textbox(label="", placeholder="Please enter your prompt. \n"),
gr.Slider(
label="Guidance scale",
minimum=2,
maximum=14,
step=0.1,
value=7.5,
),
gr.Slider(
label="Percentage of steps to apply motion guidance (v2 w/ MG only)",
minimum=0.0,
maximum=0.5,
step=0.05,
value=0.5,
),
gr.Slider(
label="Number of inference steps",
minimum=4,
maximum=50,
step=1,
value=16,
),
gr.Slider(
label="Number of Video Frames",
minimum=16,
maximum=48,
step=8,
value=16,
),
gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
randomize=True,
),
gr.Checkbox(label="Randomize seed", value=True),
gr.Radio(
["bf16", "fp16", "fp32"],
label="torch.dtype",
value="bf16",
interactive=True,
info="Dtype for inference. Default is bf16.",
)
],
outputs=[
gr.Video(label="Generated Video", width=512, height=320, interactive=False, autoplay=True),
Textbox(label="input prompt"),
Textbox(label="model info"),
gr.Slider(label="seed"),
],
description=DESCRIPTION,
theme=gr.themes.Default(),
css=block_css,
examples=examples,
cache_examples=False,
concurrency_limit=10,
)
demo.launch()
|