Spaces:
Running
on
Zero
Running
on
Zero
File size: 18,340 Bytes
5bec700 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 |
import ast
import gc
import random
import cv2
import numpy as np
import torch
import torch.nn.functional as F
from diffusers.models.attention_processor import AttnProcessor2_0
from diffusers.models.attention import BasicTransformerBlock
from decord import VideoReader
import wandb
def extract_into_tensor(a, t, x_shape):
b, *_ = t.shape
out = a.gather(-1, t)
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
def is_attn(name):
return "attn1" or "attn2" == name.split(".")[-1]
def set_processors(attentions):
for attn in attentions:
attn.set_processor(AttnProcessor2_0())
def set_torch_2_attn(unet):
optim_count = 0
for name, module in unet.named_modules():
if is_attn(name):
if isinstance(module, torch.nn.ModuleList):
for m in module:
if isinstance(m, BasicTransformerBlock):
set_processors([m.attn1, m.attn2])
optim_count += 1
if optim_count > 0:
print(f"{optim_count} Attention layers using Scaled Dot Product Attention.")
# From LatentConsistencyModel.get_guidance_scale_embedding
def guidance_scale_embedding(w, embedding_dim=512, dtype=torch.float32):
"""
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
Args:
timesteps (`torch.Tensor`):
generate embedding vectors at these timesteps
embedding_dim (`int`, *optional*, defaults to 512):
dimension of the embeddings to generate
dtype:
data type of the generated embeddings
Returns:
`torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)`
"""
assert len(w.shape) == 1
w = w * 1000.0
half_dim = embedding_dim // 2
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
emb = w.to(dtype)[:, None] * emb[None, :]
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
if embedding_dim % 2 == 1: # zero pad
emb = torch.nn.functional.pad(emb, (0, 1))
assert emb.shape == (w.shape[0], embedding_dim)
return emb
def append_dims(x, target_dims):
"""Appends dimensions to the end of a tensor until it has target_dims dimensions."""
dims_to_append = target_dims - x.ndim
if dims_to_append < 0:
raise ValueError(
f"input has {x.ndim} dims but target_dims is {target_dims}, which is less"
)
return x[(...,) + (None,) * dims_to_append]
# From LCMScheduler.get_scalings_for_boundary_condition_discrete
def scalings_for_boundary_conditions(timestep, sigma_data=0.5, timestep_scaling=10.0):
scaled_timestep = timestep_scaling * timestep
c_skip = sigma_data**2 / (scaled_timestep**2 + sigma_data**2)
c_out = scaled_timestep / (scaled_timestep**2 + sigma_data**2) ** 0.5
return c_skip, c_out
# Compare LCMScheduler.step, Step 4
def get_predicted_original_sample(
model_output, timesteps, sample, prediction_type, alphas, sigmas
):
alphas = extract_into_tensor(alphas, timesteps, sample.shape)
sigmas = extract_into_tensor(sigmas, timesteps, sample.shape)
if prediction_type == "epsilon":
pred_x_0 = (sample - sigmas * model_output) / alphas
elif prediction_type == "sample":
pred_x_0 = model_output
elif prediction_type == "v_prediction":
pred_x_0 = alphas * sample - sigmas * model_output
else:
raise ValueError(
f"Prediction type {prediction_type} is not supported; currently, `epsilon`, `sample`, and `v_prediction`"
f" are supported."
)
return pred_x_0
# Based on step 4 in DDIMScheduler.step
def get_predicted_noise(
model_output, timesteps, sample, prediction_type, alphas, sigmas
):
alphas = extract_into_tensor(alphas, timesteps, sample.shape)
sigmas = extract_into_tensor(sigmas, timesteps, sample.shape)
if prediction_type == "epsilon":
pred_epsilon = model_output
elif prediction_type == "sample":
pred_epsilon = (sample - alphas * model_output) / sigmas
elif prediction_type == "v_prediction":
pred_epsilon = alphas * model_output + sigmas * sample
else:
raise ValueError(
f"Prediction type {prediction_type} is not supported; currently, `epsilon`, `sample`, and `v_prediction`"
f" are supported."
)
return pred_epsilon
# From LatentConsistencyModel.get_guidance_scale_embedding
def guidance_scale_embedding(w, embedding_dim=512, dtype=torch.float32):
"""
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
Args:
timesteps (`torch.Tensor`):
generate embedding vectors at these timesteps
embedding_dim (`int`, *optional*, defaults to 512):
dimension of the embeddings to generate
dtype:
data type of the generated embeddings
Returns:
`torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)`
"""
assert len(w.shape) == 1
w = w * 1000.0
half_dim = embedding_dim // 2
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
emb = w.to(dtype)[:, None] * emb[None, :]
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
if embedding_dim % 2 == 1: # zero pad
emb = torch.nn.functional.pad(emb, (0, 1))
assert emb.shape == (w.shape[0], embedding_dim)
return emb
def append_dims(x, target_dims):
"""Appends dimensions to the end of a tensor until it has target_dims dimensions."""
dims_to_append = target_dims - x.ndim
if dims_to_append < 0:
raise ValueError(
f"input has {x.ndim} dims but target_dims is {target_dims}, which is less"
)
return x[(...,) + (None,) * dims_to_append]
# From LCMScheduler.get_scalings_for_boundary_condition_discrete
def scalings_for_boundary_conditions(timestep, sigma_data=0.5, timestep_scaling=10.0):
scaled_timestep = timestep_scaling * timestep
c_skip = sigma_data**2 / (scaled_timestep**2 + sigma_data**2)
c_out = scaled_timestep / (scaled_timestep**2 + sigma_data**2) ** 0.5
return c_skip, c_out
# Compare LCMScheduler.step, Step 4
def get_predicted_original_sample(
model_output, timesteps, sample, prediction_type, alphas, sigmas
):
alphas = extract_into_tensor(alphas, timesteps, sample.shape)
sigmas = extract_into_tensor(sigmas, timesteps, sample.shape)
if prediction_type == "epsilon":
pred_x_0 = (sample - sigmas * model_output) / alphas
elif prediction_type == "sample":
pred_x_0 = model_output
elif prediction_type == "v_prediction":
pred_x_0 = alphas * sample - sigmas * model_output
else:
raise ValueError(
f"Prediction type {prediction_type} is not supported; currently, `epsilon`, `sample`, and `v_prediction`"
f" are supported."
)
return pred_x_0
# Based on step 4 in DDIMScheduler.step
def get_predicted_noise(
model_output, timesteps, sample, prediction_type, alphas, sigmas
):
alphas = extract_into_tensor(alphas, timesteps, sample.shape)
sigmas = extract_into_tensor(sigmas, timesteps, sample.shape)
if prediction_type == "epsilon":
pred_epsilon = model_output
elif prediction_type == "sample":
pred_epsilon = (sample - alphas * model_output) / sigmas
elif prediction_type == "v_prediction":
pred_epsilon = alphas * model_output + sigmas * sample
else:
raise ValueError(
f"Prediction type {prediction_type} is not supported; currently, `epsilon`, `sample`, and `v_prediction`"
f" are supported."
)
return pred_epsilon
def param_optim(model, condition, extra_params=None, is_lora=False, negation=None):
extra_params = extra_params if len(extra_params.keys()) > 0 else None
return {
"model": model,
"condition": condition,
"extra_params": extra_params,
"is_lora": is_lora,
"negation": negation,
}
def create_optim_params(name="param", params=None, lr=5e-6, extra_params=None):
params = {"name": name, "params": params, "lr": lr}
if extra_params is not None:
for k, v in extra_params.items():
params[k] = v
return params
def create_optimizer_params(model_list, lr):
import itertools
optimizer_params = []
for optim in model_list:
model, condition, extra_params, is_lora, negation = optim.values()
# Check if we are doing LoRA training.
if is_lora and condition and isinstance(model, list):
params = create_optim_params(
params=itertools.chain(*model), extra_params=extra_params
)
optimizer_params.append(params)
continue
if is_lora and condition and not isinstance(model, list):
for n, p in model.named_parameters():
if "lora" in n:
params = create_optim_params(n, p, lr, extra_params)
optimizer_params.append(params)
continue
# If this is true, we can train it.
if condition:
for n, p in model.named_parameters():
should_negate = "lora" in n and not is_lora
if should_negate:
continue
params = create_optim_params(n, p, lr, extra_params)
optimizer_params.append(params)
return optimizer_params
def handle_trainable_modules(
model, trainable_modules=None, is_enabled=True, negation=None
):
acc = []
unfrozen_params = 0
if trainable_modules is not None:
unlock_all = any([name == "all" for name in trainable_modules])
if unlock_all:
model.requires_grad_(True)
unfrozen_params = len(list(model.parameters()))
else:
model.requires_grad_(False)
for name, param in model.named_parameters():
for tm in trainable_modules:
if all([tm in name, name not in acc, "lora" not in name]):
param.requires_grad_(is_enabled)
acc.append(name)
unfrozen_params += 1
def huber_loss(pred, target, huber_c=0.001):
loss = torch.sqrt((pred.float() - target.float()) ** 2 + huber_c**2) - huber_c
return loss.mean()
@torch.no_grad()
def update_ema(target_params, source_params, rate=0.99):
"""
Update target parameters to be closer to those of source parameters using
an exponential moving average.
:param target_params: the target parameter sequence.
:param source_params: the source parameter sequence.
:param rate: the EMA rate (closer to 1 means slower).
"""
for targ, src in zip(target_params, source_params):
src_to_dtype = src.to(targ.dtype)
targ.detach().mul_(rate).add_(src_to_dtype, alpha=1 - rate)
def log_validation_video(pipeline, args, accelerator, save_fps):
if args.seed is None:
generator = None
else:
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed)
validation_prompts = [
"An astronaut riding a horse.",
"Darth vader surfing in waves.",
"Robot dancing in times square.",
"Clown fish swimming through the coral reef.",
"A child excitedly swings on a rusty swing set, laughter filling the air.",
"With the style of van gogh, A young couple dances under the moonlight by the lake.",
"A young woman with glasses is jogging in the park wearing a pink headband.",
"Impressionist style, a yellow rubber duck floating on the wave on the sunset",
"Wolf, turns its head, in the wild",
"Iron man, walks, on the moon, 8k, high detailed, best quality",
"With the style of low-poly game art, A majestic, white horse gallops gracefully",
"a rabbit, low-poly game art style",
]
video_logs = []
if getattr(args, "use_motion_cond", False):
use_motion_cond = True
else:
use_motion_cond = False
for _, prompt in enumerate(validation_prompts):
if use_motion_cond:
motin_gs_unit = (args.motion_gs_max - args.motion_gs_min) / 2
for i in range(3):
with torch.autocast("cuda"):
videos = pipeline(
prompt=prompt,
frames=args.n_frames,
num_inference_steps=8,
num_videos_per_prompt=1,
fps=args.fps,
use_motion_cond=True,
motion_gs=motin_gs_unit * i,
lcm_origin_steps=args.num_ddim_timesteps,
generator=generator,
)
videos = (videos.clamp(-1.0, 1.0) + 1.0) / 2.0
videos = (
(videos * 255)
.to(torch.uint8)
.permute(0, 2, 1, 3, 4)
.cpu()
.numpy()
)
video_logs.append(
{
"validation_prompt": f"GS={i * motin_gs_unit}, {prompt}",
"videos": videos,
}
)
else:
for i in range(2):
with torch.autocast("cuda"):
videos = pipeline(
prompt=prompt,
frames=args.n_frames,
num_inference_steps=4 * (i + 1),
num_videos_per_prompt=1,
fps=args.fps,
use_motion_cond=False,
lcm_origin_steps=args.num_ddim_timesteps,
generator=generator,
)
videos = (videos.clamp(-1.0, 1.0) + 1.0) / 2.0
videos = (
(videos * 255)
.to(torch.uint8)
.permute(0, 2, 1, 3, 4)
.cpu()
.numpy()
)
video_logs.append(
{
"validation_prompt": f"Steps={4 * (i + 1)}, {prompt}",
"videos": videos,
}
)
for tracker in accelerator.trackers:
if tracker.name == "wandb":
formatted_videos = []
for log in video_logs:
videos = log["videos"]
validation_prompt = log["validation_prompt"]
for video in videos:
video = wandb.Video(video, caption=validation_prompt, fps=save_fps)
formatted_videos.append(video)
tracker.log({f"validation": formatted_videos})
del pipeline
gc.collect()
def tuple_type(s):
if isinstance(s, tuple):
return s
value = ast.literal_eval(s)
if isinstance(value, tuple):
return value
raise TypeError("Argument must be a tuple")
def load_model_checkpoint(model, ckpt):
def load_checkpoint(model, ckpt, full_strict):
state_dict = torch.load(ckpt, map_location="cpu", weights_only=True)
if "state_dict" in list(state_dict.keys()):
state_dict = state_dict["state_dict"]
model.load_state_dict(state_dict, strict=full_strict)
del state_dict
gc.collect()
return model
load_checkpoint(model, ckpt, full_strict=True)
print(">>> model checkpoint loaded.")
return model
def read_video_to_tensor(
path_to_video, sample_fps, sample_frames, uniform_sampling=False
):
video_reader = VideoReader(path_to_video)
video_fps = video_reader.get_avg_fps()
video_frames = video_reader._num_frame
video_duration = video_frames / video_fps
sample_duration = sample_frames / sample_fps
stride = video_fps / sample_fps
if uniform_sampling or video_duration <= sample_duration:
index_range = np.linspace(0, video_frames - 1, sample_frames).astype(np.int32)
else:
max_start_frame = video_frames - np.ceil(sample_frames * stride).astype(
np.int32
)
if max_start_frame > 0:
start_frame = random.randint(0, max_start_frame)
else:
start_frame = 0
index_range = start_frame + np.arange(sample_frames) * stride
index_range = np.round(index_range).astype(np.int32)
sampled_frames = video_reader.get_batch(index_range).asnumpy()
pixel_values = torch.from_numpy(sampled_frames).permute(0, 3, 1, 2).contiguous()
pixel_values = pixel_values / 255.0
del video_reader
return pixel_values
def calculate_motion_rank_new(tensor_ref, tensor_gen, rank_k=1):
if rank_k == 0:
loss = torch.tensor(0.0, device=tensor_ref.device)
elif rank_k > tensor_ref.shape[-1]:
raise ValueError(
"The value of rank_k cannot be larger than the number of frames"
)
else:
# Sort the reference tensor along the frames dimension
_, sorted_indices = torch.sort(tensor_ref, dim=-1)
# Create a mask to select the top rank_k frames
mask = torch.zeros_like(tensor_ref, dtype=torch.bool)
mask.scatter_(-1, sorted_indices[..., -rank_k:], True)
# Compute the mean squared error loss only on the masked elements
loss = F.mse_loss(tensor_ref[mask].detach(), tensor_gen[mask])
return loss
def compute_temp_loss(attention_prob, attention_prob_example):
temp_attn_prob_loss = []
# 1. Loop though all layers to get the query, key, and Compute the PCA loss
for name in attention_prob.keys():
attn_prob_example = attention_prob_example[name]
attn_prob = attention_prob[name]
module_attn_loss = calculate_motion_rank_new(
attn_prob_example.detach(), attn_prob, rank_k=1
)
temp_attn_prob_loss.append(module_attn_loss)
loss_temp = torch.stack(temp_attn_prob_loss) * 100
loss = loss_temp.mean()
return loss
|