File size: 7,401 Bytes
5bec700
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import os
import uuid
from omegaconf import OmegaConf
import spaces

import random

import imageio
import torch
import torchvision
import gradio as gr
import numpy as np
from gradio.components import Textbox, Video

from utils.common_utils import load_model_checkpoint
from utils.utils import instantiate_from_config
from scheduler.t2v_turbo_scheduler import T2VTurboScheduler
from pipeline.t2v_turbo_vc2_pipeline import T2VTurboVC2Pipeline

DESCRIPTION = """# T2V-Turbo πŸš€

Our model is distilled from [VideoCrafter2](https://ailab-cvc.github.io/videocrafter2/).
T2V-Turbo learns a LoRA on top of the base model by aligning to the reward feedback from [HPSv2.1](https://github.com/tgxs002/HPSv2/tree/master) and [InternVid2 Stage 2 Model](https://huggingface.co/OpenGVLab/InternVideo2-Stage2_1B-224p-f4).
T2V-Turbo-v2 optimizes the training techniques by finetuning the full base model and further aligns to [CLIPScore](https://huggingface.co/laion/CLIP-ViT-H-14-laion2B-s32B-b79K)

T2V-Turbo trains on pure WebVid-10M data, whereas T2V-Turbo-v2 carufully optimizes different learning objectives with a mixutre of VidGen-1M and WebVid-10M data.

Moreover, T2V-Turbo-v2 supports to distill motion priors from the training videos. 

[Project page for T2V-Turbo](https://t2v-turbo.github.io) πŸ˜„
[Project page for T2V-Turbo-v2](https://t2v-turbo-v2.github.io) πŸ›«
"""
if torch.cuda.is_available():
    DESCRIPTION += "\n<p>Running on CUDA πŸ˜€</p>"
elif hasattr(torch, "xpu") and torch.xpu.is_available():
    DESCRIPTION += "\n<p>Running on XPU πŸ€“</p>"
else:
    DESCRIPTION += "\n<p>Running on CPU πŸ₯Ά This demo does not work on CPU.</p>"

MAX_SEED = np.iinfo(np.int32).max


def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed


def save_video(video_array, video_save_path, fps: int = 16):
    video = video_array.detach().cpu()
    video = torch.clamp(video.float(), -1.0, 1.0)
    video = video.permute(1, 0, 2, 3)  # t,c,h,w
    video = (video + 1.0) / 2.0
    video = (video * 255).to(torch.uint8).permute(0, 2, 3, 1)

    torchvision.io.write_video(
        video_save_path, video, fps=fps, video_codec="h264", options={"crf": "10"}
    )

example_txt = [
    "An astronaut riding a horse.",
    "Darth vader surfing in waves.",
    "light wind, feathers moving, she moves her gaze, 4k",
    "a girl floating underwater.",
    "Pikachu snowboarding.",
    "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k",
    "A musician strums his guitar, serenading the moonlit night.",
]

examples = [[i, 7.5, 0.5, 16, 16, 0, True, "bf16"] for i in example_txt]

@spaces.GPU(duration=120)
@torch.inference_mode()
def generate(
    prompt: str,
    guidance_scale: float = 7.5,
    percentage: float = 0.5,
    num_inference_steps: int = 4,
    num_frames: int = 16,
    seed: int = 0,
    randomize_seed: bool = False,
    param_dtype="bf16",
    motion_gs: float = 0.05,
    fps: int = 8,
):

    seed = randomize_seed_fn(seed, randomize_seed)
    torch.manual_seed(seed)

    if param_dtype == "bf16":
        dtype = torch.bfloat16
        unet.dtype = torch.bfloat16
    elif param_dtype == "fp16":
        dtype = torch.float16
        unet.dtype = torch.float16
    elif param_dtype == "fp32":
        dtype = torch.float32
        unet.dtype = torch.float32
    else:
        raise ValueError(f"Unknown dtype: {param_dtype}")

    pipeline.unet.to(device, dtype)
    pipeline.text_encoder.to(device, dtype)
    pipeline.vae.to(device, dtype)
    pipeline.to(device, dtype)

    result = pipeline(
        prompt=prompt,
        frames=num_frames,
        fps=fps,
        guidance_scale=guidance_scale,
        motion_gs=motion_gs,
        use_motion_cond=True,
        percentage=percentage,
        num_inference_steps=num_inference_steps,
        lcm_origin_steps=200,
        num_videos_per_prompt=1,
    )

    torch.cuda.empty_cache()
    tmp_save_path = "tmp.mp4"
    root_path = "./videos/"
    os.makedirs(root_path, exist_ok=True)
    video_save_path = os.path.join(root_path, tmp_save_path)

    save_video(result[0], video_save_path, fps=fps)
    display_model_info = f"Video size: {num_frames}x320x512, Sampling Step: {num_inference_steps}, Guidance Scale: {guidance_scale}"
    return video_save_path, prompt, display_model_info, seed


block_css = """
#buttons button {
    min-width: min(120px,100%);
}
"""


if __name__ == "__main__":
    device = torch.device("cuda:0")

    config = OmegaConf.load("configs/inference_t2v_512_v2.0.yaml")
    model_config = config.pop("model", OmegaConf.create())
    pretrained_t2v = instantiate_from_config(model_config)
    pretrained_t2v = load_model_checkpoint(pretrained_t2v, "checkpoints/VideoCrafter2_model.ckpt")
    
    unet_config = model_config["params"]["unet_config"]
    unet_config["params"]["use_checkpoint"] = False
    unet_config["params"]["time_cond_proj_dim"] = 256
    unet_config["params"]["motion_cond_proj_dim"] = 256

    unet = instantiate_from_config(unet_config)

    unet.load_state_dict(torch.load("checkpoints/unet_mg.pt", map_location=device))
    unet.eval()

    pretrained_t2v.model.diffusion_model = unet
    scheduler = T2VTurboScheduler(
        linear_start=model_config["params"]["linear_start"],
        linear_end=model_config["params"]["linear_end"],
    )
    pipeline = T2VTurboVC2Pipeline(pretrained_t2v, scheduler, model_config)
    pipeline.to(device)

    demo = gr.Interface(
        fn=generate,
        inputs=[
            Textbox(label="", placeholder="Please enter your prompt. \n"),
            gr.Slider(
                label="Guidance scale",
                minimum=2,
                maximum=14,
                step=0.1,
                value=7.5,
            ),
            gr.Slider(
                label="Percentage of steps to apply motion guidance (v2 w/ MG only)",
                minimum=0.0,
                maximum=0.5,
                step=0.05,
                value=0.5,
            ),
            gr.Slider(
                label="Number of inference steps",
                minimum=4,
                maximum=50,
                step=1,
                value=16,
            ),
            gr.Slider(
                label="Number of Video Frames",
                minimum=16,
                maximum=48,
                step=8,
                value=16,
            ),
            gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
                randomize=True,
            ),
            gr.Checkbox(label="Randomize seed", value=True),
            gr.Radio(
                ["bf16", "fp16", "fp32"],
                label="torch.dtype",
                value="bf16",
                interactive=True,
                info="Dtype for inference. Default is bf16.",
            )
        ],
        outputs=[
            gr.Video(label="Generated Video", width=512, height=320, interactive=False, autoplay=True),
            Textbox(label="input prompt"),
            Textbox(label="model info"),
            gr.Slider(label="seed"),
        ],
        description=DESCRIPTION,
        theme=gr.themes.Default(),
        css=block_css,
        examples=examples,
        cache_examples=False,
        concurrency_limit=10,
    )
    demo.launch()