import torch import torch.nn as nn device = torch.device("cuda" if torch.cuda.is_available() else "cpu") backwarp_tenGrid = {} def warp(tenInput, tenFlow): k = (str(tenFlow.device), str(tenFlow.size())) if k not in backwarp_tenGrid: tenHorizontal = ( torch.linspace(-1.0, 1.0, tenFlow.shape[3], device=device) .view(1, 1, 1, tenFlow.shape[3]) .expand(tenFlow.shape[0], -1, tenFlow.shape[2], -1) ) tenVertical = ( torch.linspace(-1.0, 1.0, tenFlow.shape[2], device=device) .view(1, 1, tenFlow.shape[2], 1) .expand(tenFlow.shape[0], -1, -1, tenFlow.shape[3]) ) backwarp_tenGrid[k] = torch.cat([tenHorizontal, tenVertical], 1).to(device) tenFlow = torch.cat( [ tenFlow[:, 0:1, :, :] / ((tenInput.shape[3] - 1.0) / 2.0), tenFlow[:, 1:2, :, :] / ((tenInput.shape[2] - 1.0) / 2.0), ], 1, ) g = (backwarp_tenGrid[k] + tenFlow).permute(0, 2, 3, 1) return torch.nn.functional.grid_sample( input=tenInput, grid=g, mode="bilinear", padding_mode="border", align_corners=True )