Spaces:
Running
on
L40S
Running
on
L40S
import torch | |
import torch.nn as nn | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
backwarp_tenGrid = {} | |
def warp(tenInput, tenFlow): | |
k = (str(tenFlow.device), str(tenFlow.size())) | |
if k not in backwarp_tenGrid: | |
tenHorizontal = ( | |
torch.linspace(-1.0, 1.0, tenFlow.shape[3], device=device) | |
.view(1, 1, 1, tenFlow.shape[3]) | |
.expand(tenFlow.shape[0], -1, tenFlow.shape[2], -1) | |
) | |
tenVertical = ( | |
torch.linspace(-1.0, 1.0, tenFlow.shape[2], device=device) | |
.view(1, 1, tenFlow.shape[2], 1) | |
.expand(tenFlow.shape[0], -1, -1, tenFlow.shape[3]) | |
) | |
backwarp_tenGrid[k] = torch.cat([tenHorizontal, tenVertical], 1).to(device) | |
tenFlow = torch.cat( | |
[ | |
tenFlow[:, 0:1, :, :] / ((tenInput.shape[3] - 1.0) / 2.0), | |
tenFlow[:, 1:2, :, :] / ((tenInput.shape[2] - 1.0) / 2.0), | |
], | |
1, | |
) | |
g = (backwarp_tenGrid[k] + tenFlow).permute(0, 2, 3, 1) | |
return torch.nn.functional.grid_sample( | |
input=tenInput, grid=g, mode="bilinear", padding_mode="border", align_corners=True | |
) | |