Spaces:
Runtime error
Runtime error
Karthikeyan
commited on
Commit
•
5fc65a1
1
Parent(s):
b55512d
Update app.py
Browse files
app.py
CHANGED
@@ -23,8 +23,9 @@ class SentimentAnalyzer:
|
|
23 |
# result = pipe(text, label)
|
24 |
# sentiment_scores= {result['labels'][0]:result['scores'][0],result['labels'][1]:result['scores'][1],result['labels'][2]:result['scores'][2]}
|
25 |
# sentiment_scores_str = f"Positive: {sentiment_scores['positive']:.2f}, Neutral: {sentiment_scores['neutral']:.2f}, Negative: {sentiment_scores['negative']:.2f}"
|
26 |
-
prompt = f""" Your task is find the top 3 setiments : <positive, negative, neutral> and it's sentiment score for the Mental Healthcare Doctor Chatbot and patient conversation text.\
|
27 |
-
your are analyze the text and provide the output in the following json order: \"\"\"
|
|
|
28 |
analyze the text : '''{text}'''
|
29 |
"""
|
30 |
response = openai.Completion.create(
|
@@ -60,14 +61,32 @@ class SentimentAnalyzer:
|
|
60 |
return message
|
61 |
|
62 |
def analyze_sentiment_for_graph(self, text):
|
63 |
-
pipe = pipeline("zero-shot-classification", model=self.model)
|
64 |
-
label=["positive", "negative", "neutral"]
|
65 |
-
result = pipe(text, label)
|
66 |
-
sentiment_scores = {
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
return sentiment_scores
|
72 |
|
73 |
def emotion_analysis_for_graph(self,text):
|
|
|
23 |
# result = pipe(text, label)
|
24 |
# sentiment_scores= {result['labels'][0]:result['scores'][0],result['labels'][1]:result['scores'][1],result['labels'][2]:result['scores'][2]}
|
25 |
# sentiment_scores_str = f"Positive: {sentiment_scores['positive']:.2f}, Neutral: {sentiment_scores['neutral']:.2f}, Negative: {sentiment_scores['negative']:.2f}"
|
26 |
+
prompt = f""" Your task is find the top 3 setiments : <labels = positive, negative, neutral> and it's sentiment score for the Mental Healthcare Doctor Chatbot and patient conversation text.\
|
27 |
+
your are analyze the text and provide the output in the following json order: \"\"\"
|
28 |
+
<\{result['labels'][0]: result['scores'][0], result['labels'][1]: result['scores'][1], result['labels'][2]: result['scores'][2] \}>\"\"\" \
|
29 |
analyze the text : '''{text}'''
|
30 |
"""
|
31 |
response = openai.Completion.create(
|
|
|
61 |
return message
|
62 |
|
63 |
def analyze_sentiment_for_graph(self, text):
|
64 |
+
# pipe = pipeline("zero-shot-classification", model=self.model)
|
65 |
+
# label=["positive", "negative", "neutral"]
|
66 |
+
# result = pipe(text, label)
|
67 |
+
# sentiment_scores = {
|
68 |
+
# result['labels'][0]: result['scores'][0],
|
69 |
+
# result['labels'][1]: result['scores'][1],
|
70 |
+
# result['labels'][2]: result['scores'][2]
|
71 |
+
# }
|
72 |
+
prompt = f""" Your task is find the top 3 setiments : <labels = positive, negative, neutral> and it's sentiment score for the Mental Healthcare Doctor Chatbot and patient conversation text.\
|
73 |
+
your are analyze the text and provide the output in the following json order: \"\"\"
|
74 |
+
<\{result['labels'][0]: result['scores'][0], result['labels'][1]: result['scores'][1], result['labels'][2]: result['scores'][2] \}>\"\"\" \
|
75 |
+
analyze the text : '''{text}'''
|
76 |
+
"""
|
77 |
+
response = openai.Completion.create(
|
78 |
+
model="text-davinci-003",
|
79 |
+
prompt=prompt,
|
80 |
+
temperature=1,
|
81 |
+
max_tokens=60,
|
82 |
+
top_p=1,
|
83 |
+
frequency_penalty=0,
|
84 |
+
presence_penalty=0
|
85 |
+
)
|
86 |
+
|
87 |
+
# Extract the generated text
|
88 |
+
sentiment_scores = response.choices[0].text.strip()
|
89 |
+
print(sentiment_scores)
|
90 |
return sentiment_scores
|
91 |
|
92 |
def emotion_analysis_for_graph(self,text):
|