SungBeom commited on
Commit
159e834
1 Parent(s): e4cea54

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -4
app.py CHANGED
@@ -35,7 +35,7 @@ llm = ChatOpenAI(model='gpt-3.5-turbo', temperature=0.0)
35
  stage_analyzer_chain = LLMChain(
36
  llm=llm,
37
  prompt=stage_analyzer_inception_prompt,
38
- verbose=True,
39
  output_key="stage_number")
40
 
41
  df = pd.read_json('./data/unified_wine_data.json', encoding='utf-8', lines=True)
@@ -86,7 +86,7 @@ vectorstore = Chroma.from_documents(docs, embeddings)
86
  document_content_description = "Database of a wine"
87
  llm = OpenAI(temperature=0)
88
  retriever = SelfQueryRetriever.from_llm(
89
- llm, vectorstore, document_content_description, metadata_field_info, verbose=True
90
  ) # Added missing closing parenthesis
91
 
92
  def search_with_url(query):
@@ -227,7 +227,7 @@ class CustomOutputParser(AgentOutputParser):
227
 
228
  output_parser = CustomOutputParser()
229
 
230
- llm_chain = LLMChain(llm=ChatOpenAI(model='gpt-4', temperature=0.0), prompt=prompt, verbose=True,)
231
 
232
  tool_names = [tool.name for tool in tools]
233
  agent = LLMSingleActionAgent(
@@ -237,7 +237,7 @@ agent = LLMSingleActionAgent(
237
  allowed_tools=tool_names
238
  )
239
 
240
- agent_executor = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True)
241
 
242
  import gradio as gr
243
 
 
35
  stage_analyzer_chain = LLMChain(
36
  llm=llm,
37
  prompt=stage_analyzer_inception_prompt,
38
+ verbose=False,
39
  output_key="stage_number")
40
 
41
  df = pd.read_json('./data/unified_wine_data.json', encoding='utf-8', lines=True)
 
86
  document_content_description = "Database of a wine"
87
  llm = OpenAI(temperature=0)
88
  retriever = SelfQueryRetriever.from_llm(
89
+ llm, vectorstore, document_content_description, metadata_field_info, verbose=False
90
  ) # Added missing closing parenthesis
91
 
92
  def search_with_url(query):
 
227
 
228
  output_parser = CustomOutputParser()
229
 
230
+ llm_chain = LLMChain(llm=ChatOpenAI(model='gpt-4', temperature=0.0), prompt=prompt, verbose=False,)
231
 
232
  tool_names = [tool.name for tool in tools]
233
  agent = LLMSingleActionAgent(
 
237
  allowed_tools=tool_names
238
  )
239
 
240
+ agent_executor = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=False)
241
 
242
  import gradio as gr
243