chatwine-korean / app.py
SungBeom's picture
Update app.py
57b936b
raw
history blame
34.7 kB
import os
import configparser
from typing import List, Union, Optional, Any, Dict
import re
import sys
import time
import json
import asyncio
import aiohttp
import requests
import threading
import pandas as pd
from langchain import SerpAPIWrapper, LLMChain
from langchain.agents import Tool, AgentType, AgentExecutor, LLMSingleActionAgent, AgentOutputParser
from langchain.callbacks.streaming_stdout_final_only import FinalStreamingStdOutCallbackHandler
from langchain.chat_models import ChatOpenAI
from langchain.chains import LLMChain, SimpleSequentialChain
from langchain.chains.query_constructor.base import AttributeInfo
from langchain.document_loaders import DataFrameLoader, SeleniumURLLoader
from langchain.embeddings import OpenAIEmbeddings
from langchain.indexes import VectorstoreIndexCreator
from langchain.prompts import PromptTemplate, StringPromptTemplate, load_prompt, BaseChatPromptTemplate
from langchain.llms import OpenAI
from langchain.retrievers.self_query.base import SelfQueryRetriever
from langchain.schema import AgentAction, AgentFinish, HumanMessage
from langchain.vectorstores import Chroma
import gradio as gr
# config = configparser.ConfigParser()
# config.read('./secrets.ini')
# openai_api_key = config['OPENAI']['OPENAI_API_KEY']
# serper_api_key = config['SERPER']['SERPER_API_KEY']
# serp_api_key = config['SERPAPI']['SERPAPI_API_KEY']
# kakao_api_key = config['KAKAO_MAP']['KAKAO_API_KEY']
# huggingface_token = config['HUGGINGFACE']['HUGGINGFACE_TOKEN']
# os.environ.update({'OPENAI_API_KEY': openai_api_key})
# os.environ.update({'SERPER_API_KEY': serper_api_key})
# os.environ.update({'SERPAPI_API_KEY': serp_api_key})
# os.environ.update({'KAKAO_API_KEY': kakao_api_key})
# os.environ.update({'HUGGINGFACE_TOKEN': huggingface_token})
huggingface_token = os.getenv('HUGGINGFACE_TOKEN')
kakao_api_key = os.getenv('KAKAO_API_KEY')
### Load wine database json
df = pd.read_json('./data/unified_wine_data.json', encoding='utf-8', lines=True)
### Prepare Langchain Tool
#### Tool1: Wine database 1
df['page_content'] = ''
columns = ['name', 'pairing']
for column in columns:
if column != 'page_content':
df['page_content'] += column + ':' + df[column].astype(str) + ','
columns = ['rating', 'price', 'body', 'sweetness', 'alcohol', 'acidity', 'tannin']
for idx in df.index:
for column in columns:
if type(df[column][idx]) == str:
df[column][idx] = df[column][idx].replace(',', '')
df[column][idx] = float(df[column][idx]) if df[column][idx] != '' else -1
loader =DataFrameLoader(data_frame=df, page_content_column='page_content')
docs = loader.load()
embeddings = OpenAIEmbeddings()
# ์•„๋ž˜๋Š” wine database1์— metadata_field Attribute์ด๋‹ค. ์•„๋ž˜๋ฅผ ๊ธฐ์ค€์œผ๋กœ ์„œ์น˜๋ฅผ ์ง„ํ–‰ํ•˜๊ฒŒ ๋œ๋‹ค.
metadata_field_info = [
AttributeInfo(
name="body",
description="1-5 rating for the body of wine",
type="int",
),
AttributeInfo(
name="tannin",
description="1-5 rating for the tannin of wine",
type="int",
),
AttributeInfo(
name="sweetness",
description="1-5 rating for the sweetness of wine",
type="int",
),
AttributeInfo(
name="alcohol",
description="1-5 rating for the alcohol of wine",
type="int",
),
AttributeInfo(
name="price",
description="The price of the wine",
type="int",
),
AttributeInfo(
name="rating",
description="1-5 rating for the wine",
type="float"
),
AttributeInfo(
name="wine_type",
description="The type of wine. It can be '๋ ˆ๋“œ', '๋กœ์ œ', '์ŠคํŒŒํด๋ง', 'ํ™”์ดํŠธ', '๋””์ €ํŠธ', '์ฃผ์ •๊ฐ•ํ™”'",
type="string"
),
AttributeInfo(
name="country",
description="The country of wine. It can be '๊ธฐํƒ€ ์‹ ๋Œ€๋ฅ™', '๊ธฐํƒ€๊ตฌ๋Œ€๋ฅ™', '๋‰ด์งˆ๋žœ๋“œ', '๋…์ผ', '๋ฏธ๊ตญ', '์ŠคํŽ˜์ธ', '์•„๋ฅดํ—จํ‹ฐ๋‚˜', '์ดํƒˆ๋ฆฌ์•„', '์น ๋ ˆ', 'ํฌ๋ฃจํˆฌ์นผ', 'ํ”„๋ž‘์Šค', 'ํ˜ธ์ฃผ'",
type="float"
),
]
wine_vectorstore = Chroma.from_documents(docs, embeddings)
document_content_description = "A database of wines. 'name' and 'pairing' must be included in the query, and 'Body', 'Tannin', 'Sweetness', 'Alcohol', 'Price', 'Rating', 'Wine_Type', and 'Country' can be included in the filter. query and filter must be form of 'key: value'. For example, query: 'name: ๋”ํŽ˜๋ฆฌ๋‡ฝ, pairing:์œก๋ฅ˜'."
llm = OpenAI(temperature=0)
wine_retriever = SelfQueryRetriever.from_llm(
llm, wine_vectorstore, document_content_description, metadata_field_info, verbose=True
) # Added missing closing parenthesis
#### Tool2: Wine bar database
df = pd.read_json('./data/wine_bar.json', encoding='utf-8', lines=True)
df['page_content'] = ''
columns = ['summary']
for column in columns:
if column != 'page_content':
df['page_content'] += df[column].astype(str) + ','
df = df.drop(columns=['review'])
loader =DataFrameLoader(data_frame=df, page_content_column='page_content')
docs = loader.load()
embeddings = OpenAIEmbeddings()
wine_bar_vectorstore = Chroma.from_documents(docs, embeddings)
wine_bar_vectorstore.similarity_search_with_score('์—ฌ์ž์นœ๊ตฌ๋ž‘ ๊ฐˆ๋งŒํ•œ ์™€์ธ๋ฐ”', k=5)
metadata_field_info = [
AttributeInfo(
name="name",
description="The name of the wine bar",
type="str",
),
AttributeInfo(
name="rating",
description="1-5 rating for the wine bar",
type="float"
),
AttributeInfo(
name="district",
description="The district of the wine bar.",
type="str",
),
]
document_content_description = "Database of a winebar"
llm = OpenAI(temperature=0)
wine_bar_retriever = SelfQueryRetriever.from_llm(
llm, wine_bar_vectorstore, document_content_description, metadata_field_info=metadata_field_info, verbose=True
) # Added missing closing parenthesis
#### Tool3: Search in Google
search = SerpAPIWrapper()
#### Tool4: Kakao Map API
class KakaoMap:
def __init__(self):
self.url = 'https://dapi.kakao.com/v2/local/search/keyword.json'
self.headers = {"Authorization": f"KakaoAK {kakao_api_key}"}
async def arun(self, query):
async with aiohttp.ClientSession() as session:
params = {'query': query,'page': 1}
async with session.get(self.url, params=params, headers=self.headers) as response:
places = await response.json()
address = places['documents'][0]['address_name']
if not address.split()[0].startswith('์„œ์šธ'):
return {'district': 'not in seoul'}
else:
return {'district': address.split()[1]}
def run(self, query):
params = {'query': query,'page': 1}
places = requests.get(self.url, params=params, headers=self.headers).json()
address = places['documents'][0]['address_name']
if not address.split()[0].startswith('์„œ์šธ'):
return {'district': 'not in seoul'}
else:
return {'district': address.split()[1]}
kakao_map = KakaoMap()
tools = [
Tool(
name="Wine database",
func=wine_retriever.get_relevant_documents,
coroutine=wine_retriever.aget_relevant_documents,
description="""
Database about the wines in wine store.
You can search wines with the following attributes:
- price: The price range of the wine. You have to specify greater than and less than.
- rating: 1-5 rating float for the wine. You have to specify greater than and less than.
- wine_type: The type of wine. It can be '๋ ˆ๋“œ', '๋กœ์ œ', '์ŠคํŒŒํด๋ง', 'ํ™”์ดํŠธ', '๋””์ €ํŠธ', '์ฃผ์ •๊ฐ•ํ™”'
- name: The name of wine.
- pairing: The food pairing of wine.
The form of Action Input must be 'key1: value1, key2: value2, ...'. For example, to search for wines with a rating of less than 3 points, a price range of 50000์› or more, and a meat pairing, enter 'rating: gt 0 lt 3, price: gt 50000, pairing: ๊ณ ๊ธฐ'.
--------------------------------------------------
You can get the following attributes:
- url: Wine purchase site URL.
- vivino_link: Vivino link of wine.
- flavor_description
- site_name: Wine purchase site name.
- name: The name of wine in korean.
- en_name: The name of wine in english.
- price: The price of wine in ์›.
- rating: 1-5 vivino rating.
- wine_type: The type of wine.
- pairing: The food pairing of wine.
- pickup_location: Offline stores where you can purchase wine
- img_url
- country
- body
- tannin
- sweetness
- acidity
- alcohol
- grape
The form of Desired Outcome must be 'key1, key2, ...'. For example to get the name and price of wine, enter 'name, price'.
"""
),
Tool(
name = "Wine bar database",
func=wine_bar_retriever.get_relevant_documents,
coroutine=wine_bar_retriever.aget_relevant_documents,
description="Database about the winebars in Seoul. It should be the first thing you use when looking for information about a wine bar."
"""
- query: The query of winebar. You can search wines with review data like mood or something.
- name: The name of winebar.
- price: The average price point of a wine bar.
- rating: 1-5 rating float for the wine bar.
- district: The district of wine bar. Input district must be korean. For example, if you want to search for wines in Gangnam, enter 'district: ๊ฐ•๋‚จ๊ตฌ'
The form of Action Input must be 'key1: value1, key2: value2, ...'.
--------------------------------------------------
You can get the following attributes:
- name: The name of winebar.
- url: Wine purchase site URL.
- rating: 1-5 ๋ง๊ณ ํ”Œ๋ ˆ์ดํŠธ(๋ง›์ง‘๊ฒ€์ƒ‰ ์•ฑ) rating.
- summary: Summarized information about wine bars
- address
- phone
- parking
- opening_hours
- menu
- holidays
- img_url
The form of Desired Outcome must be 'key1, key2, ...'. For example to get the name and price of wine, enter 'name, price'.
"""
),
Tool(
name = "Search",
func=search.run,
coroutine=search.arun,
description="Useful for when you need to ask with search. Search in English only."
),
Tool(
name = "Map",
func=kakao_map.run,
coroutine=kakao_map.arun,
description="The tool used to draw a district for a region. When looking for wine bars, you can use this before applying filters based on location. The query must be in Korean. You can get the following attribute: district."
),
]
template = """
Your role is a chatbot that asks customers questions about wine and makes recommendations.
Never forget your name is "์ด์šฐ์„ ".
Keep your responses in short length to retain the user's attention unless you describe the wine for recommendations.
Be sure to actively empathize and respond to your users.
Only generate one response at a time! When you are done generating, end with '<END_OF_TURN>' to give the user a chance to respond.
Responses should be in Korean.
Complete the objective as best you can. You have access to the following tools:
{tools}
Use the following format:
Thought: you should always think about what to do
Action: the action to take, should be one of [{tool_names}]
Action Input: the input to the action
Desired Outcome: the desired outcome from the action (optional)
Observation: the result of the action
... (this Thought/Action/Action Input/Observation can repeat N times)
Thought: I now know the final answer
์ด์šฐ์„ : the final response to the user
You must respond according to the conversation stage within the triple backticks and conversation history within in '======'.
Current conversation stage:
```{conversation_stage}```
Conversation history:
=======
{conversation_history}
=======
Last user saying: {input}
{agent_scratchpad}
"""
conversation_stages_dict = {
"1": "Introduction: Start the conversation by introducing yourself. Maintain politeness, respect, and a professional tone.",
"2": "Needs Analysis: Identify the customer's needs to make wine recommendations. Note that the wine database tools are not available. You ask about the occasion the customer will enjoy the wine, what they eat with it, and their desired price point. Ask only ONE question at a time.",
"3": "Checking Price Range: Asking the customer's preferred price point. Again, remember that the tool for this is not available. But if you know the customer's perferences and price range, then search for the three most suitable wines with tool and recommend them product cards in a list format with a Vivino link, price, rating, wine type, flavor description, and image.",
"4": "Wine Recommendation: Propose the three most suitable wines based on the customer's needs and price range. Before the recommendation, you should have identified the occasion the customer will enjoy the wine, what they will eat with it, and their desired price point. Each wine recommendation should form of product cards in a list format with a Vivino link, price, rating, wine type, flavor description, and image. Use only wines available in the database for recommendations. If there are no suitable wines in the database, inform the customer. After making a recommendation, inquire whether the customer likes the suggested wine.",
"5": "Sales: If the customer approves of the recommended wine, provide a detailed description. Supply a product card in a list format with a Vivino link, price, rating, wine type, flavor description, and image.",
"6": "Location Suggestions: Recommend wine bars based on the customer's location and occasion. Before making a recommendation, always use the map tool to find the district of the customer's preferred location. Then use the wine bar database tool to find a suitable wine bar. Provide form of product cards in a list format with the wine bar's name, url, rating, address, menu, opening_hours, holidays, phone, summary, and image with img_urls.",
"7": "Concluding the Conversation: Respond appropriately to the customer's comments to wrap up the conversation.",
"8": "Questions and Answers: This stage involves answering customer's inquiries. Use the search tool or wine database tool to provide specific answers where possible. Describe answer as detailed as possible",
"9": "Other Situations: Use this step when the situation does not fit into any of the steps between 1 and 8."
}
# Set up a prompt template
class CustomPromptTemplate(StringPromptTemplate):
# The template to use
template: str
# The list of tools available
tools: List[Tool]
def format(self, **kwargs) -> str:
stage_number = kwargs.pop("stage_number")
kwargs["conversation_stage"] = conversation_stages_dict[stage_number]
# Get the intermediate steps (AgentAction, Observation tuples)
# Format them in a particular way
intermediate_steps = kwargs.pop("intermediate_steps")
thoughts = ""
special_chars = "()'[]{}"
for action, observation in intermediate_steps:
thoughts += action.log
if ('Desired Outcome: ' in action.log) and (('Action: Wine database' in action.log) or ('Action: Wine bar database' in action.log)):
regex = r"Desired Outcome:(.*)"
match = re.search(regex, action.log, re.DOTALL)
if not match:
raise ValueError(f"Could not parse Desired Outcome: `{action.log}`")
desired_outcome_keys = [key.strip() for key in match.group(1).split(',')]
pattern = re.compile(r'metadata=\{(.*?)\}')
matches = pattern.findall(f'{observation}')
documents = ['{'+f'{match}'+'}' for match in matches]
pattern = re.compile(r"'(\w+)':\s*('[^']+'|\b[^\s,]+\b)")
output=[]
for doc in documents:
# Extract key-value pairs from the document string
matches = pattern.findall(doc)
# Convert matches to a dictionary
doc_dict = dict(matches)
# Create a new dictionary containing only the desired keys
item_dict = {}
for key in desired_outcome_keys:
value = doc_dict.get(key, "")
for c in special_chars:
value = value.replace(c, "")
item_dict[key] = value
output.append(item_dict)
observation = ','.join([str(i) for i in output])
thoughts += f"\nObservation: {observation}\nThought: "
# Set the agent_scratchpad variable to that value
kwargs["agent_scratchpad"] = thoughts
# Create a tools variable from the list of tools provided
kwargs["tools"] = "\n".join([f"{tool.name}: {tool.description}" for tool in self.tools])
# Create a list of tool names for the tools provided
kwargs["tool_names"] = ", ".join([tool.name for tool in self.tools])
return self.template.format(**kwargs)
prompt = CustomPromptTemplate(
template=template,
tools=tools,
input_variables=["input", "intermediate_steps", "conversation_history", "stage_number"]
)
class CustomOutputParser(AgentOutputParser):
def parse(self, llm_output: str) -> Union[AgentAction, AgentFinish]:
# Check if agent should finish
if "์ด์šฐ์„ : " in llm_output:
return AgentFinish(
# Return values is generally always a dictionary with a single `output` key
# It is not recommended to try anything else at the moment :)
return_values={"output": llm_output.split("์ด์šฐ์„ : ")[-1].strip()},
log=llm_output,
)
# Parse out the action and action input
regex = r"Action\s*\d*\s*:(.*?)\nAction\s*\d*\s*Input\s*\d*\s*:[\s]*(.*?)\n"
match = re.search(regex, llm_output, re.DOTALL)
if not match:
raise ValueError(f"Could not parse LLM output: `{llm_output}`")
action = match.group(1).strip()
action_input = match.group(2)
# desired_outcome = match.group(3).strip() if match.group(3) else None
# Return the action and action input
return AgentAction(tool=action, tool_input=action_input.strip(" ").strip('"'), log=llm_output)
output_parser = CustomOutputParser()
### Gradio
class CustomStreamingStdOutCallbackHandler(FinalStreamingStdOutCallbackHandler):
"""Callback handler for streaming in agents.
Only works with agents using LLMs that support streaming.
The output will be streamed until "<END" is reached.
"""
def __init__(
self,
*,
answer_prefix_tokens: Optional[List[str]] = None,
end_prefix_tokens: str = "<END",
strip_tokens: bool = True,
stream_prefix: bool = False,
sender: str
) -> None:
"""Instantiate EofStreamingStdOutCallbackHandler.
Args:
answer_prefix_tokens: Token sequence that prefixes the anwer.
Default is ["Final", "Answer", ":"]
end_of_file_token: Token that signals end of file.
Default is "END"
strip_tokens: Ignore white spaces and new lines when comparing
answer_prefix_tokens to last tokens? (to determine if answer has been
reached)
stream_prefix: Should answer prefix itself also be streamed?
"""
super().__init__(answer_prefix_tokens=answer_prefix_tokens, strip_tokens=strip_tokens, stream_prefix=stream_prefix)
self.end_prefix_tokens = end_prefix_tokens
self.end_reached = False
self.sender = sender
def append_to_last_tokens(self, token: str) -> None:
self.last_tokens.append(token)
self.last_tokens_stripped.append(token.strip())
if len(self.last_tokens) > 5:
self.last_tokens.pop(0)
self.last_tokens_stripped.pop(0)
def on_llm_start(
self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
) -> None:
"""Run when LLM starts running."""
self.answer_reached = False
self.end_reached = False
def check_if_answer_reached(self) -> bool:
if self.strip_tokens:
return ''.join(self.last_tokens_stripped) in self.answer_prefix_tokens_stripped
else:
unfied_last_tokens = ''.join(self.last_tokens)
try:
unfied_last_tokens.index(self.answer_prefix_tokens)
return True
except:
return False
def check_if_end_reached(self) -> bool:
if self.strip_tokens:
return ''.join(self.last_tokens_stripped) in self.answer_prefix_tokens_stripped
else:
unfied_last_tokens = ''.join(self.last_tokens)
try:
unfied_last_tokens.index(self.end_prefix_tokens)
self.sender[1] = True
return True
except:
# try:
# unfied_last_tokens.index('Action Input')
# self.sender[1] = False
# return False
# except:
# return False
return False
def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
"""Run on new LLM token. Only available when streaming is enabled."""
# Remember the last n tokens, where n = len(answer_prefix_tokens)
self.append_to_last_tokens(token)
# Check if the last n tokens match the answer_prefix_tokens list ...
if not self.answer_reached and self.check_if_answer_reached():
self.answer_reached = True
if self.stream_prefix:
for t in self.last_tokens:
sys.stdout.write(t)
sys.stdout.flush()
return
if not self.end_reached and self.check_if_end_reached():
self.end_reached = True
if self.end_reached:
pass
elif self.answer_reached:
if self.last_tokens[-2] == ":":
pass
else:
self.sender[0] += self.last_tokens[-2]
class UnifiedAgent:
def __init__(self):
tools = [
Tool(
name="Wine database",
func=wine_retriever.get_relevant_documents,
coroutine=wine_retriever.aget_relevant_documents,
description="""
Database about the wines in wine store.
You can search wines with the following attributes:
- price: The price range of the wine. You have to specify greater than and less than.
- rating: 1-5 rating float for the wine. You have to specify greater than and less than.
- wine_type: The type of wine. It can be '๋ ˆ๋“œ', '๋กœ์ œ', '์ŠคํŒŒํด๋ง', 'ํ™”์ดํŠธ', '๋””์ €ํŠธ', '์ฃผ์ •๊ฐ•ํ™”'
- name: The name of wine.
- pairing: The food pairing of wine.
The form of Action Input must be 'key1: value1, key2: value2, ...'. For example, to search for wines with a rating of less than 3 points, a price range of 50000์› or more, and a meat pairing, enter 'rating: gt 0 lt 3, price: gt 50000, pairing: ๊ณ ๊ธฐ'.
--------------------------------------------------
You can get the following attributes:
- url: Wine purchase site URL.
- vivino_link: Vivino link of wine.
- flavor_description
- site_name: Wine purchase site name.
- name: The name of wine in korean.
- en_name: The name of wine in english.
- price: The price of wine in ์›.
- rating: 1-5 vivino rating.
- wine_type: The type of wine.
- pairing: The food pairing of wine.
- pickup_location: Offline stores where you can purchase wine
- img_url
- country
- body
- tannin
- sweetness
- acidity
- alcohol
- grape
The form of Desired Outcome must be 'key1, key2, ...'. For example to get the name and price of wine, enter 'name, price'.
"""
),
Tool(
name = "Wine bar database",
func=wine_bar_retriever.get_relevant_documents,
coroutine=wine_bar_retriever.aget_relevant_documents,
description="Database about the winebars in Seoul. It should be the first thing you use when looking for information about a wine bar."
"""
- query: The query of winebar. You can search wines with review data like mood or something.
- name: The name of winebar.
- price: The average price point of a wine bar.
- rating: 1-5 rating float for the wine bar.
- district: The district of wine bar. Input district must be korean. For example, if you want to search for wines in Gangnam, enter 'district: ๊ฐ•๋‚จ๊ตฌ'
The form of Action Input must be 'key1: value1, key2: value2, ...'.
--------------------------------------------------
You can get the following attributes:
- name: The name of winebar.
- url: Wine purchase site URL.
- rating: 1-5 ๋ง๊ณ ํ”Œ๋ ˆ์ดํŠธ(๋ง›์ง‘๊ฒ€์ƒ‰ ์•ฑ) rating.
- summary: Summarized information about wine bars
- address
- phone
- parking
- opening_hours
- menu
- holidays
- img_url
The form of Desired Outcome must be 'key1, key2, ...'. For example to get the name and price of wine, enter 'name, price'.
"""
),
Tool(
name = "Search",
func=search.run,
coroutine=search.arun,
description="Useful for when you need to ask with search. Search in English only."
),
Tool(
name = "Map",
func=kakao_map.run,
coroutine=kakao_map.arun,
description="The tool used to draw a district for a region. When looking for wine bars, you can use this before applying filters based on location. The query must be in Korean. You can get the following attribute: district."
),
]
llm_chain = LLMChain(llm=ChatOpenAI(model='gpt-4', temperature=0.5, streaming=True), prompt=prompt, verbose=True,)
tool_names = [tool.name for tool in tools]
agent = LLMSingleActionAgent(
llm_chain=llm_chain,
output_parser=output_parser,
stop=["\nObservation:"],
allowed_tools=tool_names
)
agent_executor = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=False)
self.agent_executor = agent_executor
async def arun(self, sender, *args, **kwargs):
resp = await self.agent_executor.arun(kwargs, callbacks=[CustomStreamingStdOutCallbackHandler(answer_prefix_tokens='์ด์šฐ์„ :', end_prefix_tokens='<END', strip_tokens=False, sender=sender)])
return resp
class UnifiedChain:
def __init__(self):
stage_analyzer_inception_prompt = load_prompt("./templates/stage_analyzer_inception_prompt_template.json")
llm = ChatOpenAI(model='gpt-3.5-turbo', temperature=0.0)
stage_analyzer_chain = LLMChain(
llm=llm,
prompt=stage_analyzer_inception_prompt,
verbose=False,
output_key="stage_number")
user_response_prompt = load_prompt("./templates/user_response_prompt.json")
# ๋žญ์ฒด์ธ ๋ชจ๋ธ ์„ ์–ธ, ๋žญ์ฒด์ธ์€ ์–ธ์–ด๋ชจ๋ธ๊ณผ ํ”„๋กฌํ”„ํŠธ๋กœ ๊ตฌ์„ฑ๋ฉ๋‹ˆ๋‹ค.
llm = ChatOpenAI(model='gpt-3.5-turbo', temperature=0.5)
user_response_chain = LLMChain(
llm=llm,
prompt=user_response_prompt,
verbose=False, # ๊ณผ์ •์„ ์ถœ๋ ฅํ• ์ง€
output_key="user_responses"
)
self.stage_analyzer_chain = stage_analyzer_chain
self.user_response_chain = user_response_chain
async def arun_stage_analyzer_chain(self, *args, **kwargs):
resp = await self.stage_analyzer_chain.arun(kwargs)
return resp
async def arun_user_response_chain(self, *args, **kwargs):
resp = await self.user_response_chain.arun(kwargs)
return resp
unified_chain = UnifiedChain()
unified_agent = UnifiedAgent()
# logging
# callback = gr.CSVLogger()
hf_writer = gr.HuggingFaceDatasetSaver(huggingface_token, "chatwine-korean")
with gr.Blocks(css='#chatbot .overflow-y-auto{height:750px}') as demo:
with gr.Row():
gr.HTML("""<div style="text-align: center; max-width: 500px; margin: 0 auto;">
<div>
<h1>ChatWine</h1>
</div>
<p style="margin-bottom: 10px; font-size: 94%">
LinkedIn <a href="https://www.linkedin.com/company/audrey-ai/about/">Audrey.ai</a>
</p>
</div>""")
chatbot = gr.Chatbot()
with gr.Row():
with gr.Column(scale=0.85):
msg = gr.Textbox()
with gr.Column(scale=0.15, min_width=0):
submit_btn = gr.Button("์ „์†ก")
user_response_examples = gr.Dataset(samples=[["์ด๋ฒˆ ์ฃผ์— ์นœ๊ตฌ๋“ค๊ณผ ๋ชจ์ž„์ด ์žˆ๋Š”๋ฐ, ํ›Œ๋ฅญํ•œ ์™€์ธ ํ•œ ๋ณ‘์„ ์ถ”์ฒœํ•ด์ค„๋ž˜?"], ["์ž…๋ฌธ์ž์—๊ฒŒ ์ข‹์€ ์™€์ธ์„ ์ถ”์ฒœํ•ด์ค„๋ž˜?"], ["์—ฐ์ธ๊ณผ ๊ฐ€๊ธฐ ์ข‹์€ ์™€์ธ๋ฐ”๋ฅผ ์•Œ๋ ค์ค˜"]], components=[msg], type="index")
clear_btn = gr.ClearButton([msg, chatbot])
dev_mod = True
cur_stage = gr.Textbox(visible=dev_mod, interactive=False, label='current_stage')
stage_hist = gr.Textbox(visible=dev_mod, value="stage history: ", interactive=False, label='stage history')
chat_hist = gr.Textbox(visible=dev_mod, interactive=False, label='chatting_history')
response_examples_text = gr.Textbox(visible=dev_mod, interactive=False, value="์ด๋ฒˆ ์ฃผ์— ์นœ๊ตฌ๋“ค๊ณผ ๋ชจ์ž„์ด ์žˆ๋Š”๋ฐ, ํ›Œ๋ฅญํ•œ ์™€์ธ ํ•œ ๋ณ‘์„ ์ถ”์ฒœํ•ด์ค„๋ž˜?|์ž…๋ฌธ์ž์—๊ฒŒ ์ข‹์€ ์™€์ธ์„ ์ถ”์ฒœํ•ด์ค„๋ž˜?|์—ฐ์ธ๊ณผ ๊ฐ€๊ธฐ ์ข‹์€ ์™€์ธ๋ฐ”๋ฅผ ์•Œ๋ ค์ค˜", label='response_examples')
btn = gr.Button("Flag", visible=dev_mod)
hf_writer.setup(components=[chat_hist, stage_hist, response_examples_text], flagging_dir="chatwine-korean")
def click_flag_btn(*args):
hf_writer.flag(flag_data=[*args])
def clean(*args):
return gr.Dataset.update(samples=[["์ด๋ฒˆ ์ฃผ์— ์นœ๊ตฌ๋“ค๊ณผ ๋ชจ์ž„์ด ์žˆ๋Š”๋ฐ, ํ›Œ๋ฅญํ•œ ์™€์ธ ํ•œ ๋ณ‘์„ ์ถ”์ฒœํ•ด์ค„๋ž˜?"], ["์ž…๋ฌธ์ž์—๊ฒŒ ์ข‹์€ ์™€์ธ์„ ์ถ”์ฒœํ•ด์ค„๋ž˜?"], ["์—ฐ์ธ๊ณผ ๊ฐ€๊ธฐ ์ข‹์€ ์™€์ธ๋ฐ”๋ฅผ ์•Œ๋ ค์ค˜"]]), "", "stage history: ", "", "์ด๋ฒˆ ์ฃผ์— ์นœ๊ตฌ๋“ค๊ณผ ๋ชจ์ž„์ด ์žˆ๋Š”๋ฐ, ํ›Œ๋ฅญํ•œ ์™€์ธ ํ•œ ๋ณ‘์„ ์ถ”์ฒœํ•ด์ค„๋ž˜?|์ž…๋ฌธ์ž์—๊ฒŒ ์ข‹์€ ์™€์ธ์„ ์ถ”์ฒœํ•ด์ค„๋ž˜?|์—ฐ์ธ๊ณผ ๊ฐ€๊ธฐ ์ข‹์€ ์™€์ธ๋ฐ”๋ฅผ ์•Œ๋ ค์ค˜"
def load_example(response_text, input_idx):
response_examples = []
for user_response_example in response_text.split('|'):
response_examples.append([user_response_example])
return response_examples[input_idx][0]
async def agent_run(agent_exec, inp, sender):
sender[0] = ""
await agent_exec.arun(inp)
def user_chat(user_message, chat_history_list, chat_history):
return (chat_history_list + [[user_message, None]], chat_history + f"User: {user_message} <END_OF_TURN>\n", [])
async def bot_stage_pred(user_response, chat_history, stage_history):
pre_chat_history = '<END_OF_TURN>'.join(chat_history.split('<END_OF_TURN>')[:-2])
if pre_chat_history != '':
pre_chat_history += '<END_OF_TURN>'
# stage_number = unified_chain.stage_analyzer_chain.run({'conversation_history': pre_chat_history, 'stage_history': stage_history.replace('stage history: ', ''), 'last_user_saying':user_response+' <END_OF_TURN>\n'})
stage_number = await unified_chain.arun_stage_analyzer_chain(conversation_history=pre_chat_history, stage_history= stage_history.replace('stage history: ', ''), last_user_saying=user_response+' <END_OF_TURN>\n')
stage_number = stage_number[-1]
stage_history += stage_number if stage_history == "stage history: " else ", " + stage_number
return stage_number, stage_history
async def bot_chat(user_response, chat_history, chat_history_list, current_stage): # stream output by yielding
pre_chat_history = '<END_OF_TURN>'.join(chat_history.split('<END_OF_TURN>')[:-2])
if pre_chat_history != '':
pre_chat_history += '<END_OF_TURN>'
sender = ["", False]
task = asyncio.create_task(unified_agent.arun(sender = sender, input=user_response+' <END_OF_TURN>\n', conversation_history=pre_chat_history, stage_number= current_stage))
await asyncio.sleep(0)
while(sender[1] == False):
await asyncio.sleep(0.2)
chat_history_list[-1][1] = sender[0]
yield chat_history_list, chat_history + f"์ด์šฐ์„ : {sender[0]}<END_OF_TURN>\n"
chat_history_list[-1][1] = sender[0]
yield chat_history_list, chat_history + f"์ด์šฐ์„ : {sender[0]}<END_OF_TURN>\n"
async def bot_response_pred(chat_history):
response_examples = []
pre_chat_history = '<END_OF_TURN>'.join(chat_history.split('<END_OF_TURN>')[-3:])
out = await unified_chain.arun_user_response_chain(conversation_history=pre_chat_history)
for user_response_example in out.split('|'):
response_examples.append([user_response_example])
return [response_examples, out, ""]
# btn.click(lambda *args: hf_writer.flag(args), [msg, chat_hist, stage_hist, response_examples_text], None, preprocess=False)
msg.submit(
user_chat, [msg, chatbot, chat_hist], [chatbot, chat_hist, user_response_examples], queue=False
).then(
bot_stage_pred, [msg, chat_hist, stage_hist], [cur_stage, stage_hist], queue=False
).then(
bot_chat, [msg, chat_hist, chatbot, cur_stage], [chatbot, chat_hist]
).then(
bot_response_pred, chat_hist, [user_response_examples, response_examples_text, msg]
).then(
click_flag_btn, [chat_hist, stage_hist, response_examples_text], None
)
submit_btn.click(
user_chat, [msg, chatbot, chat_hist], [chatbot, chat_hist, user_response_examples], queue=False
).then(
bot_stage_pred, [msg, chat_hist, stage_hist], [cur_stage, stage_hist], queue=False
).then(
bot_chat, [msg, chat_hist, chatbot, cur_stage], [chatbot, chat_hist]
).then(
bot_response_pred, chat_hist, [user_response_examples, response_examples_text, msg]
).then(
click_flag_btn, [chat_hist, stage_hist, response_examples_text], None
)
clear_btn.click(
clean,
inputs=[user_response_examples, cur_stage, stage_hist, chat_hist, response_examples_text],
outputs=[user_response_examples, cur_stage, stage_hist, chat_hist, response_examples_text],
queue=False)
user_response_examples.click(load_example, inputs=[response_examples_text, user_response_examples], outputs=[msg], queue=False)
btn.click(lambda *args: hf_writer.flag(args), [chat_hist, stage_hist, response_examples_text], None, preprocess=False)
demo.queue(concurrency_count=100)
demo.launch()