SungBeom's picture
Upload folder using huggingface_hub
4a51346
raw
history blame
16 kB
from chromadb.api.types import Documents, EmbeddingFunction, Embeddings
from pathlib import Path
import os
import tarfile
import requests
from typing import Any, Dict, List, cast
import numpy as np
import numpy.typing as npt
import importlib
from typing import Optional
try:
from chromadb.is_thin_client import is_thin_client
except ImportError:
is_thin_client = False
class SentenceTransformerEmbeddingFunction(EmbeddingFunction):
# Since we do dynamic imports we have to type this as Any
models: Dict[str, Any] = {}
# If you have a beefier machine, try "gtr-t5-large".
# for a full list of options: https://huggingface.co/sentence-transformers, https://www.sbert.net/docs/pretrained_models.html
def __init__(self, model_name: str = "all-MiniLM-L6-v2", device: str = "cpu"):
if model_name not in self.models:
try:
from sentence_transformers import SentenceTransformer
except ImportError:
raise ValueError(
"The sentence_transformers python package is not installed. Please install it with `pip install sentence_transformers`"
)
self.models[model_name] = SentenceTransformer(model_name, device=device)
self._model = self.models[model_name]
def __call__(self, texts: Documents) -> Embeddings:
return self._model.encode(list(texts), convert_to_numpy=True).tolist() # type: ignore # noqa E501
class Text2VecEmbeddingFunction(EmbeddingFunction):
def __init__(self, model_name: str = "shibing624/text2vec-base-chinese"):
try:
from text2vec import SentenceModel
except ImportError:
raise ValueError(
"The text2vec python package is not installed. Please install it with `pip install text2vec`"
)
self._model = SentenceModel(model_name_or_path=model_name)
def __call__(self, texts: Documents) -> Embeddings:
return self._model.encode(list(texts), convert_to_numpy=True).tolist() # type: ignore # noqa E501
class OpenAIEmbeddingFunction(EmbeddingFunction):
def __init__(
self,
api_key: Optional[str] = None,
model_name: str = "text-embedding-ada-002",
organization_id: Optional[str] = None,
api_base: Optional[str] = None,
api_type: Optional[str] = None,
):
"""
Initialize the OpenAIEmbeddingFunction.
Args:
api_key (str, optional): Your API key for the OpenAI API. If not
provided, it will raise an error to provide an OpenAI API key.
organization_id(str, optional): The OpenAI organization ID if applicable
model_name (str, optional): The name of the model to use for text
embeddings. Defaults to "text-embedding-ada-002".
api_base (str, optional): The base path for the API. If not provided,
it will use the base path for the OpenAI API. This can be used to
point to a different deployment, such as an Azure deployment.
api_type (str, optional): The type of the API deployment. This can be
used to specify a different deployment, such as 'azure'. If not
provided, it will use the default OpenAI deployment.
"""
try:
import openai
except ImportError:
raise ValueError(
"The openai python package is not installed. Please install it with `pip install openai`"
)
if api_key is not None:
openai.api_key = api_key
# If the api key is still not set, raise an error
elif openai.api_key is None:
raise ValueError(
"Please provide an OpenAI API key. You can get one at https://platform.openai.com/account/api-keys"
)
if api_base is not None:
openai.api_base = api_base
if api_type is not None:
openai.api_type = api_type
if organization_id is not None:
openai.organization = organization_id
self._client = openai.Embedding
self._model_name = model_name
def __call__(self, texts: Documents) -> Embeddings:
# replace newlines, which can negatively affect performance.
texts = [t.replace("\n", " ") for t in texts]
# Call the OpenAI Embedding API
embeddings = self._client.create(input=texts, engine=self._model_name)["data"]
# Sort resulting embeddings by index
sorted_embeddings = sorted(embeddings, key=lambda e: e["index"]) # type: ignore
# Return just the embeddings
return [result["embedding"] for result in sorted_embeddings]
class CohereEmbeddingFunction(EmbeddingFunction):
def __init__(self, api_key: str, model_name: str = "large"):
try:
import cohere
except ImportError:
raise ValueError(
"The cohere python package is not installed. Please install it with `pip install cohere`"
)
self._client = cohere.Client(api_key)
self._model_name = model_name
def __call__(self, texts: Documents) -> Embeddings:
# Call Cohere Embedding API for each document.
return [
embeddings
for embeddings in self._client.embed(texts=texts, model=self._model_name)
]
class HuggingFaceEmbeddingFunction(EmbeddingFunction):
def __init__(
self, api_key: str, model_name: str = "sentence-transformers/all-MiniLM-L6-v2"
):
try:
import requests
except ImportError:
raise ValueError(
"The requests python package is not installed. Please install it with `pip install requests`"
)
self._api_url = f"https://api-inference.huggingface.co/pipeline/feature-extraction/{model_name}"
self._session = requests.Session()
self._session.headers.update({"Authorization": f"Bearer {api_key}"})
def __call__(self, texts: Documents) -> Embeddings:
# Call HuggingFace Embedding API for each document
return self._session.post( # type: ignore
self._api_url, json={"inputs": texts, "options": {"wait_for_model": True}}
).json()
class InstructorEmbeddingFunction(EmbeddingFunction):
# If you have a GPU with at least 6GB try model_name = "hkunlp/instructor-xl" and device = "cuda"
# for a full list of options: https://github.com/HKUNLP/instructor-embedding#model-list
def __init__(
self,
model_name: str = "hkunlp/instructor-base",
device: str = "cpu",
instruction: Optional[str] = None,
):
try:
from InstructorEmbedding import INSTRUCTOR
except ImportError:
raise ValueError(
"The InstructorEmbedding python package is not installed. Please install it with `pip install InstructorEmbedding`"
)
self._model = INSTRUCTOR(model_name, device=device)
self._instruction = instruction
def __call__(self, texts: Documents) -> Embeddings:
if self._instruction is None:
return self._model.encode(texts).tolist()
texts_with_instructions = [[self._instruction, text] for text in texts]
return self._model.encode(texts_with_instructions).tolist()
# In order to remove dependencies on sentence-transformers, which in turn depends on
# pytorch and sentence-piece we have created a default ONNX embedding function that
# implements the same functionality as "all-MiniLM-L6-v2" from sentence-transformers.
# visit https://github.com/chroma-core/onnx-embedding for the source code to generate
# and verify the ONNX model.
class ONNXMiniLM_L6_V2(EmbeddingFunction):
MODEL_NAME = "all-MiniLM-L6-v2"
DOWNLOAD_PATH = Path.home() / ".cache" / "chroma" / "onnx_models" / MODEL_NAME
EXTRACTED_FOLDER_NAME = "onnx"
ARCHIVE_FILENAME = "onnx.tar.gz"
MODEL_DOWNLOAD_URL = (
"https://chroma-onnx-models.s3.amazonaws.com/all-MiniLM-L6-v2/onnx.tar.gz"
)
tokenizer = None
model = None
# https://github.com/python/mypy/issues/7291 mypy makes you type the constructor if
# no args
def __init__(self) -> None:
# Import dependencies on demand to mirror other embedding functions. This
# breaks typechecking, thus the ignores.
try:
# Equivalent to import onnxruntime
self.ort = importlib.import_module("onnxruntime")
except ImportError:
raise ValueError(
"The onnxruntime python package is not installed. Please install it with `pip install onnxruntime`"
)
try:
# Equivalent to from tokenizers import Tokenizer
self.Tokenizer = importlib.import_module("tokenizers").Tokenizer
except ImportError:
raise ValueError(
"The tokenizers python package is not installed. Please install it with `pip install tokenizers`"
)
try:
# Equivalent to from tqdm import tqdm
self.tqdm = importlib.import_module("tqdm").tqdm
except ImportError:
raise ValueError(
"The tqdm python package is not installed. Please install it with `pip install tqdm`"
)
# Borrowed from https://gist.github.com/yanqd0/c13ed29e29432e3cf3e7c38467f42f51
# Download with tqdm to preserve the sentence-transformers experience
def _download(self, url: str, fname: Path, chunk_size: int = 1024) -> None:
resp = requests.get(url, stream=True)
total = int(resp.headers.get("content-length", 0))
with open(fname, "wb") as file, self.tqdm(
desc=str(fname),
total=total,
unit="iB",
unit_scale=True,
unit_divisor=1024,
) as bar:
for data in resp.iter_content(chunk_size=chunk_size):
size = file.write(data)
bar.update(size)
# Use pytorches default epsilon for division by zero
# https://pytorch.org/docs/stable/generated/torch.nn.functional.normalize.html
def _normalize(self, v: npt.NDArray) -> npt.NDArray:
norm = np.linalg.norm(v, axis=1)
norm[norm == 0] = 1e-12
return v / norm[:, np.newaxis]
def _forward(self, documents: List[str], batch_size: int = 32) -> npt.NDArray:
# We need to cast to the correct type because the type checker doesn't know that init_model_and_tokenizer will set the values
self.tokenizer = cast(self.Tokenizer, self.tokenizer) # type: ignore
self.model = cast(self.ort.InferenceSession, self.model) # type: ignore
all_embeddings = []
for i in range(0, len(documents), batch_size):
batch = documents[i : i + batch_size]
encoded = [self.tokenizer.encode(d) for d in batch]
input_ids = np.array([e.ids for e in encoded])
attention_mask = np.array([e.attention_mask for e in encoded])
onnx_input = {
"input_ids": np.array(input_ids, dtype=np.int64),
"attention_mask": np.array(attention_mask, dtype=np.int64),
"token_type_ids": np.array(
[np.zeros(len(e), dtype=np.int64) for e in input_ids],
dtype=np.int64,
),
}
model_output = self.model.run(None, onnx_input)
last_hidden_state = model_output[0]
# Perform mean pooling with attention weighting
input_mask_expanded = np.broadcast_to(
np.expand_dims(attention_mask, -1), last_hidden_state.shape
)
embeddings = np.sum(last_hidden_state * input_mask_expanded, 1) / np.clip(
input_mask_expanded.sum(1), a_min=1e-9, a_max=None
)
embeddings = self._normalize(embeddings).astype(np.float32)
all_embeddings.append(embeddings)
return np.concatenate(all_embeddings)
def _init_model_and_tokenizer(self) -> None:
if self.model is None and self.tokenizer is None:
self.tokenizer = self.Tokenizer.from_file(
str(self.DOWNLOAD_PATH / self.EXTRACTED_FOLDER_NAME / "tokenizer.json")
)
# max_seq_length = 256, for some reason sentence-transformers uses 256 even though the HF config has a max length of 128
# https://github.com/UKPLab/sentence-transformers/blob/3e1929fddef16df94f8bc6e3b10598a98f46e62d/docs/_static/html/models_en_sentence_embeddings.html#LL480
self.tokenizer.enable_truncation(max_length=256)
self.tokenizer.enable_padding(pad_id=0, pad_token="[PAD]", length=256)
self.model = self.ort.InferenceSession(
str(self.DOWNLOAD_PATH / self.EXTRACTED_FOLDER_NAME / "model.onnx")
)
def __call__(self, texts: Documents) -> Embeddings:
# Only download the model when it is actually used
self._download_model_if_not_exists()
self._init_model_and_tokenizer()
res = cast(Embeddings, self._forward(texts).tolist())
return res
def _download_model_if_not_exists(self) -> None:
# Model is not downloaded yet
if not os.path.exists(self.DOWNLOAD_PATH / self.ARCHIVE_FILENAME):
os.makedirs(self.DOWNLOAD_PATH, exist_ok=True)
self._download(
self.MODEL_DOWNLOAD_URL, self.DOWNLOAD_PATH / self.ARCHIVE_FILENAME
)
with tarfile.open(
self.DOWNLOAD_PATH / self.ARCHIVE_FILENAME, "r:gz"
) as tar:
tar.extractall(self.DOWNLOAD_PATH)
def DefaultEmbeddingFunction() -> Optional[EmbeddingFunction]:
if is_thin_client:
return None
else:
return ONNXMiniLM_L6_V2()
class GooglePalmEmbeddingFunction(EmbeddingFunction):
"""To use this EmbeddingFunction, you must have the google.generativeai Python package installed and have a PaLM API key."""
def __init__(self, api_key: str, model_name: str = "models/embedding-gecko-001"):
if not api_key:
raise ValueError("Please provide a PaLM API key.")
if not model_name:
raise ValueError("Please provide the model name.")
try:
import google.generativeai as palm
except ImportError:
raise ValueError(
"The Google Generative AI python package is not installed. Please install it with `pip install google-generativeai`"
)
palm.configure(api_key=api_key)
self._palm = palm
self._model_name = model_name
def __call__(self, texts: Documents) -> Embeddings:
return [
self._palm.generate_embeddings(model=self._model_name, text=text)[
"embedding"
]
for text in texts
]
class GoogleVertexEmbeddingFunction(EmbeddingFunction):
# Follow API Quickstart for Google Vertex AI
# https://cloud.google.com/vertex-ai/docs/generative-ai/start/quickstarts/api-quickstart
# Information about the text embedding modules in Google Vertex AI
# https://cloud.google.com/vertex-ai/docs/generative-ai/embeddings/get-text-embeddings
def __init__(
self,
api_key: str,
model_name: str = "textembedding-gecko-001",
project_id: str = "cloud-large-language-models",
region: str = "us-central1",
):
self._api_url = f"https://{region}-aiplatform.googleapis.com/v1/projects/{project_id}/locations/{region}/endpoints/{model_name}:predict"
self._session = requests.Session()
self._session.headers.update({"Authorization": f"Bearer {api_key}"})
def __call__(self, texts: Documents) -> Embeddings:
response = self._session.post(
self._api_url, json={"instances": [{"content": texts}]}
).json()
if "predictions" in response:
return response["predictions"]
return {}