SungBeom's picture
Upload folder using huggingface_hub
4a51346
raw
history blame
40.1 kB
# type: ignore
import chromadb
from chromadb.api.types import QueryResult
from chromadb.config import Settings
import chromadb.server.fastapi
import pytest
import tempfile
import numpy as np
from chromadb.utils.embedding_functions import (
DefaultEmbeddingFunction,
)
@pytest.fixture
def local_persist_api():
return chromadb.Client(
Settings(
chroma_api_impl="local",
chroma_db_impl="duckdb+parquet",
persist_directory=tempfile.gettempdir() + "/test_server",
)
)
# https://docs.pytest.org/en/6.2.x/fixture.html#fixtures-can-be-requested-more-than-once-per-test-return-values-are-cached
@pytest.fixture
def local_persist_api_cache_bust():
return chromadb.Client(
Settings(
chroma_api_impl="local",
chroma_db_impl="duckdb+parquet",
persist_directory=tempfile.gettempdir() + "/test_server",
)
)
@pytest.mark.parametrize("api_fixture", [local_persist_api])
def test_persist_index_loading(api_fixture, request):
api = request.getfixturevalue("local_persist_api")
api.reset()
collection = api.create_collection("test")
collection.add(ids="id1", documents="hello")
api.persist()
del api
api2 = request.getfixturevalue("local_persist_api_cache_bust")
collection = api2.get_collection("test")
nn = collection.query(
query_texts="hello",
n_results=1,
include=["embeddings", "documents", "metadatas", "distances"],
)
for key in nn.keys():
assert len(nn[key]) == 1
@pytest.mark.parametrize("api_fixture", [local_persist_api])
def test_persist_index_loading_embedding_function(api_fixture, request):
embedding_function = lambda x: [[1, 2, 3] for _ in range(len(x))] # noqa E731
api = request.getfixturevalue("local_persist_api")
api.reset()
collection = api.create_collection("test", embedding_function=embedding_function)
collection.add(ids="id1", documents="hello")
api.persist()
del api
api2 = request.getfixturevalue("local_persist_api_cache_bust")
collection = api2.get_collection("test", embedding_function=embedding_function)
nn = collection.query(
query_texts="hello",
n_results=1,
include=["embeddings", "documents", "metadatas", "distances"],
)
for key in nn.keys():
assert len(nn[key]) == 1
@pytest.mark.parametrize("api_fixture", [local_persist_api])
def test_persist_index_get_or_create_embedding_function(api_fixture, request):
embedding_function = lambda x: [[1, 2, 3] for _ in range(len(x))] # noqa E731
api = request.getfixturevalue("local_persist_api")
api.reset()
collection = api.get_or_create_collection(
"test", embedding_function=embedding_function
)
collection.add(ids="id1", documents="hello")
api.persist()
del api
api2 = request.getfixturevalue("local_persist_api_cache_bust")
collection = api2.get_or_create_collection(
"test", embedding_function=embedding_function
)
nn = collection.query(
query_texts="hello",
n_results=1,
include=["embeddings", "documents", "metadatas", "distances"],
)
for key in nn.keys():
assert len(nn[key]) == 1
assert nn["ids"] == [["id1"]]
assert nn["embeddings"] == [[[1, 2, 3]]]
assert nn["documents"] == [["hello"]]
assert nn["distances"] == [[0]]
@pytest.mark.parametrize("api_fixture", [local_persist_api])
def test_persist(api_fixture, request):
api = request.getfixturevalue(api_fixture.__name__)
api.reset()
collection = api.create_collection("testspace")
collection.add(**batch_records)
assert collection.count() == 2
api.persist()
del api
api = request.getfixturevalue(api_fixture.__name__)
collection = api.get_collection("testspace")
assert collection.count() == 2
api.delete_collection("testspace")
api.persist()
del api
api = request.getfixturevalue(api_fixture.__name__)
assert api.list_collections() == []
def test_heartbeat(api):
assert isinstance(api.heartbeat(), int)
batch_records = {
"embeddings": [[1.1, 2.3, 3.2], [1.2, 2.24, 3.2]],
"ids": ["https://example.com/1", "https://example.com/2"],
}
def test_add(api):
api.reset()
collection = api.create_collection("testspace")
collection.add(**batch_records)
assert collection.count() == 2
def test_get_or_create(api):
api.reset()
collection = api.create_collection("testspace")
collection.add(**batch_records)
assert collection.count() == 2
with pytest.raises(Exception):
collection = api.create_collection("testspace")
collection = api.get_or_create_collection("testspace")
assert collection.count() == 2
minimal_records = {
"embeddings": [[1.1, 2.3, 3.2], [1.2, 2.24, 3.2]],
"ids": ["https://example.com/1", "https://example.com/2"],
}
def test_add_minimal(api):
api.reset()
collection = api.create_collection("testspace")
collection.add(**minimal_records)
assert collection.count() == 2
def test_get_from_db(api):
api.reset()
collection = api.create_collection("testspace")
collection.add(**batch_records)
records = collection.get(include=["embeddings", "documents", "metadatas"])
for key in records.keys():
assert len(records[key]) == 2
def test_reset_db(api):
api.reset()
collection = api.create_collection("testspace")
collection.add(**batch_records)
assert collection.count() == 2
api.reset()
assert len(api.list_collections()) == 0
def test_get_nearest_neighbors(api):
api.reset()
collection = api.create_collection("testspace")
collection.add(**batch_records)
# assert api.create_index(collection_name="testspace") # default is auto now
nn = collection.query(
query_embeddings=[1.1, 2.3, 3.2],
n_results=1,
where={},
include=["embeddings", "documents", "metadatas", "distances"],
)
for key in nn.keys():
assert len(nn[key]) == 1
nn = collection.query(
query_embeddings=[[1.1, 2.3, 3.2]],
n_results=1,
where={},
include=["embeddings", "documents", "metadatas", "distances"],
)
for key in nn.keys():
assert len(nn[key]) == 1
nn = collection.query(
query_embeddings=[[1.1, 2.3, 3.2], [0.1, 2.3, 4.5]],
n_results=1,
where={},
include=["embeddings", "documents", "metadatas", "distances"],
)
for key in nn.keys():
assert len(nn[key]) == 2
def test_delete(api):
api.reset()
collection = api.create_collection("testspace")
collection.add(**batch_records)
assert collection.count() == 2
collection.delete()
assert collection.count() == 0
def test_delete_with_index(api):
api.reset()
collection = api.create_collection("testspace")
collection.add(**batch_records)
assert collection.count() == 2
collection.query(query_embeddings=[[1.1, 2.3, 3.2]], n_results=1)
def test_count(api):
api.reset()
collection = api.create_collection("testspace")
assert collection.count() == 0
collection.add(**batch_records)
assert collection.count() == 2
def test_modify(api):
api.reset()
collection = api.create_collection("testspace")
collection.modify(name="testspace2")
# collection name is modify
assert collection.name == "testspace2"
def test_modify_error_on_existing_name(api):
api.reset()
api.create_collection("testspace")
c2 = api.create_collection("testspace2")
with pytest.raises(Exception):
c2.modify(name="testspace")
def test_metadata_cru(api):
api.reset()
metadata_a = {"a": 1, "b": 2}
# Test create metatdata
collection = api.create_collection("testspace", metadata=metadata_a)
assert collection.metadata is not None
assert collection.metadata["a"] == 1
assert collection.metadata["b"] == 2
# Test get metatdata
collection = api.get_collection("testspace")
assert collection.metadata is not None
assert collection.metadata["a"] == 1
assert collection.metadata["b"] == 2
# Test modify metatdata
collection.modify(metadata={"a": 2, "c": 3})
assert collection.metadata["a"] == 2
assert collection.metadata["c"] == 3
assert "b" not in collection.metadata
# Test get after modify metatdata
collection = api.get_collection("testspace")
assert collection.metadata is not None
assert collection.metadata["a"] == 2
assert collection.metadata["c"] == 3
assert "b" not in collection.metadata
# Test name exists get_or_create_metadata
collection = api.get_or_create_collection("testspace")
assert collection.metadata is not None
assert collection.metadata["a"] == 2
assert collection.metadata["c"] == 3
# Test name exists create metadata
collection = api.get_or_create_collection("testspace2")
assert collection.metadata is None
# Test list collections
collections = api.list_collections()
for collection in collections:
if collection.name == "testspace":
assert collection.metadata is not None
assert collection.metadata["a"] == 2
assert collection.metadata["c"] == 3
elif collection.name == "testspace2":
assert collection.metadata is None
def test_increment_index_on(api):
api.reset()
collection = api.create_collection("testspace")
collection.add(**batch_records)
assert collection.count() == 2
# increment index
# collection.create_index(index_type="hnsw", index_params={"M": 16, "efConstruction": 200})
nn = collection.query(
query_embeddings=[[1.1, 2.3, 3.2]],
n_results=1,
include=["embeddings", "documents", "metadatas", "distances"],
)
for key in nn.keys():
assert len(nn[key]) == 1
def test_increment_index_off(api):
api.reset()
collection = api.create_collection("testspace")
collection.add(**batch_records, increment_index=False)
assert collection.count() == 2
# incremental index
collection.create_index()
nn = collection.query(
query_embeddings=[[1.1, 2.3, 3.2]],
n_results=1,
include=["embeddings", "documents", "metadatas", "distances"],
)
for key in nn.keys():
assert len(nn[key]) == 1
def skipping_indexing_will_fail(api):
api.reset()
collection = api.create_collection("testspace")
collection.add(**batch_records, increment_index=False)
assert collection.count() == 2
# incremental index
with pytest.raises(Exception) as e:
collection.query(query_embeddings=[[1.1, 2.3, 3.2]], n_results=1)
assert str(e.value).__contains__("index not found")
def test_add_a_collection(api):
api.reset()
api.create_collection("testspace")
# get collection does not throw an error
collection = api.get_collection("testspace")
assert collection.name == "testspace"
# get collection should throw an error if collection does not exist
with pytest.raises(Exception):
collection = api.get_collection("testspace2")
def test_list_collections(api):
api.reset()
api.create_collection("testspace")
api.create_collection("testspace2")
# get collection does not throw an error
collections = api.list_collections()
assert len(collections) == 2
def test_reset(api):
api.reset()
api.create_collection("testspace")
api.create_collection("testspace2")
# get collection does not throw an error
collections = api.list_collections()
assert len(collections) == 2
api.reset()
collections = api.list_collections()
assert len(collections) == 0
def test_peek(api):
api.reset()
collection = api.create_collection("testspace")
collection.add(**batch_records)
assert collection.count() == 2
# peek
peek = collection.peek()
for key in peek.keys():
assert len(peek[key]) == 2
# TEST METADATA AND METADATA FILTERING
# region
metadata_records = {
"embeddings": [[1.1, 2.3, 3.2], [1.2, 2.24, 3.2]],
"ids": ["id1", "id2"],
"metadatas": [
{"int_value": 1, "string_value": "one", "float_value": 1.001},
{"int_value": 2},
],
}
def test_metadata_add_get_int_float(api):
api.reset()
collection = api.create_collection("test_int")
collection.add(**metadata_records)
items = collection.get(ids=["id1", "id2"])
assert items["metadatas"][0]["int_value"] == 1
assert items["metadatas"][0]["float_value"] == 1.001
assert items["metadatas"][1]["int_value"] == 2
assert type(items["metadatas"][0]["int_value"]) == int
assert type(items["metadatas"][0]["float_value"]) == float
def test_metadata_add_query_int_float(api):
api.reset()
collection = api.create_collection("test_int")
collection.add(**metadata_records)
items: QueryResult = collection.query(
query_embeddings=[[1.1, 2.3, 3.2]], n_results=1
)
assert items["metadatas"] is not None
assert items["metadatas"][0][0]["int_value"] == 1
assert items["metadatas"][0][0]["float_value"] == 1.001
assert type(items["metadatas"][0][0]["int_value"]) == int
assert type(items["metadatas"][0][0]["float_value"]) == float
def test_metadata_get_where_string(api):
api.reset()
collection = api.create_collection("test_int")
collection.add(**metadata_records)
items = collection.get(where={"string_value": "one"})
assert items["metadatas"][0]["int_value"] == 1
assert items["metadatas"][0]["string_value"] == "one"
def test_metadata_get_where_int(api):
api.reset()
collection = api.create_collection("test_int")
collection.add(**metadata_records)
items = collection.get(where={"int_value": 1})
assert items["metadatas"][0]["int_value"] == 1
assert items["metadatas"][0]["string_value"] == "one"
def test_metadata_get_where_float(api):
api.reset()
collection = api.create_collection("test_int")
collection.add(**metadata_records)
items = collection.get(where={"float_value": 1.001})
assert items["metadatas"][0]["int_value"] == 1
assert items["metadatas"][0]["string_value"] == "one"
assert items["metadatas"][0]["float_value"] == 1.001
def test_metadata_update_get_int_float(api):
api.reset()
collection = api.create_collection("test_int")
collection.add(**metadata_records)
collection.update(
ids=["id1"],
metadatas=[{"int_value": 2, "string_value": "two", "float_value": 2.002}],
)
items = collection.get(ids=["id1"])
assert items["metadatas"][0]["int_value"] == 2
assert items["metadatas"][0]["string_value"] == "two"
assert items["metadatas"][0]["float_value"] == 2.002
bad_metadata_records = {
"embeddings": [[1.1, 2.3, 3.2], [1.2, 2.24, 3.2]],
"ids": ["id1", "id2"],
"metadatas": [{"value": {"nested": "5"}}, {"value": [1, 2, 3]}],
}
def test_metadata_validation_add(api):
api.reset()
collection = api.create_collection("test_metadata_validation")
with pytest.raises(ValueError, match="metadata"):
collection.add(**bad_metadata_records)
def test_metadata_validation_update(api):
api.reset()
collection = api.create_collection("test_metadata_validation")
collection.add(**metadata_records)
with pytest.raises(ValueError, match="metadata"):
collection.update(ids=["id1"], metadatas={"value": {"nested": "5"}})
def test_where_validation_get(api):
api.reset()
collection = api.create_collection("test_where_validation")
with pytest.raises(ValueError, match="where"):
collection.get(where={"value": {"nested": "5"}})
def test_where_validation_query(api):
api.reset()
collection = api.create_collection("test_where_validation")
with pytest.raises(ValueError, match="where"):
collection.query(query_embeddings=[0, 0, 0], where={"value": {"nested": "5"}})
operator_records = {
"embeddings": [[1.1, 2.3, 3.2], [1.2, 2.24, 3.2]],
"ids": ["id1", "id2"],
"metadatas": [
{"int_value": 1, "string_value": "one", "float_value": 1.001},
{"int_value": 2, "float_value": 2.002, "string_value": "two"},
],
}
def test_where_lt(api):
api.reset()
collection = api.create_collection("test_where_lt")
collection.add(**operator_records)
items = collection.get(where={"int_value": {"$lt": 2}})
assert len(items["metadatas"]) == 1
def test_where_lte(api):
api.reset()
collection = api.create_collection("test_where_lte")
collection.add(**operator_records)
items = collection.get(where={"int_value": {"$lte": 2.0}})
assert len(items["metadatas"]) == 2
def test_where_gt(api):
api.reset()
collection = api.create_collection("test_where_lte")
collection.add(**operator_records)
items = collection.get(where={"float_value": {"$gt": -1.4}})
assert len(items["metadatas"]) == 2
def test_where_gte(api):
api.reset()
collection = api.create_collection("test_where_lte")
collection.add(**operator_records)
items = collection.get(where={"float_value": {"$gte": 2.002}})
assert len(items["metadatas"]) == 1
def test_where_ne_string(api):
api.reset()
collection = api.create_collection("test_where_lte")
collection.add(**operator_records)
items = collection.get(where={"string_value": {"$ne": "two"}})
assert len(items["metadatas"]) == 1
def test_where_ne_eq_number(api):
api.reset()
collection = api.create_collection("test_where_lte")
collection.add(**operator_records)
items = collection.get(where={"int_value": {"$ne": 1}})
assert len(items["metadatas"]) == 1
items = collection.get(where={"float_value": {"$eq": 2.002}})
assert len(items["metadatas"]) == 1
def test_where_valid_operators(api):
api.reset()
collection = api.create_collection("test_where_valid_operators")
collection.add(**operator_records)
with pytest.raises(ValueError):
collection.get(where={"int_value": {"$invalid": 2}})
with pytest.raises(ValueError):
collection.get(where={"int_value": {"$lt": "2"}})
with pytest.raises(ValueError):
collection.get(where={"int_value": {"$lt": 2, "$gt": 1}})
# Test invalid $and, $or
with pytest.raises(ValueError):
collection.get(where={"$and": {"int_value": {"$lt": 2}}})
with pytest.raises(ValueError):
collection.get(
where={"int_value": {"$lt": 2}, "$or": {"int_value": {"$gt": 1}}}
)
with pytest.raises(ValueError):
collection.get(
where={"$gt": [{"int_value": {"$lt": 2}}, {"int_value": {"$gt": 1}}]}
)
with pytest.raises(ValueError):
collection.get(where={"$or": [{"int_value": {"$lt": 2}}]})
with pytest.raises(ValueError):
collection.get(where={"$or": []})
with pytest.raises(ValueError):
collection.get(where={"a": {"$contains": "test"}})
with pytest.raises(ValueError):
collection.get(
where={
"$or": [
{"a": {"$contains": "first"}}, # invalid
{"$contains": "second"}, # valid
]
}
)
# TODO: Define the dimensionality of these embeddingds in terms of the default record
bad_dimensionality_records = {
"embeddings": [[1.1, 2.3, 3.2, 4.5], [1.2, 2.24, 3.2, 4.5]],
"ids": ["id1", "id2"],
}
bad_dimensionality_query = {
"query_embeddings": [[1.1, 2.3, 3.2, 4.5], [1.2, 2.24, 3.2, 4.5]],
}
bad_number_of_results_query = {
"query_embeddings": [[1.1, 2.3, 3.2], [1.2, 2.24, 3.2]],
"n_results": 100,
}
def test_dimensionality_validation_add(api):
api.reset()
collection = api.create_collection("test_dimensionality_validation")
collection.add(**minimal_records)
with pytest.raises(Exception) as e:
collection.add(**bad_dimensionality_records)
assert "dimensionality" in str(e.value)
def test_dimensionality_validation_query(api):
api.reset()
collection = api.create_collection("test_dimensionality_validation_query")
collection.add(**minimal_records)
with pytest.raises(Exception) as e:
collection.query(**bad_dimensionality_query)
assert "dimensionality" in str(e.value)
def test_query_document_valid_operators(api):
api.reset()
collection = api.create_collection("test_where_valid_operators")
collection.add(**operator_records)
with pytest.raises(ValueError, match="where document"):
collection.get(where_document={"$lt": {"$nested": 2}})
with pytest.raises(ValueError, match="where document"):
collection.query(query_embeddings=[0, 0, 0], where_document={"$contains": 2})
with pytest.raises(ValueError, match="where document"):
collection.get(where_document={"$contains": []})
# Test invalid $and, $or
with pytest.raises(ValueError):
collection.get(where_document={"$and": {"$unsupported": "doc"}})
with pytest.raises(ValueError):
collection.get(
where_document={"$or": [{"$unsupported": "doc"}, {"$unsupported": "doc"}]}
)
with pytest.raises(ValueError):
collection.get(where_document={"$or": [{"$contains": "doc"}]})
with pytest.raises(ValueError):
collection.get(where_document={"$or": []})
with pytest.raises(ValueError):
collection.get(
where_document={
"$or": [{"$and": [{"$contains": "doc"}]}, {"$contains": "doc"}]
}
)
contains_records = {
"embeddings": [[1.1, 2.3, 3.2], [1.2, 2.24, 3.2]],
"documents": ["this is doc1 and it's great!", "doc2 is also great!"],
"ids": ["id1", "id2"],
"metadatas": [
{"int_value": 1, "string_value": "one", "float_value": 1.001},
{"int_value": 2, "float_value": 2.002, "string_value": "two"},
],
}
def test_get_where_document(api):
api.reset()
collection = api.create_collection("test_get_where_document")
collection.add(**contains_records)
items = collection.get(where_document={"$contains": "doc1"})
assert len(items["metadatas"]) == 1
items = collection.get(where_document={"$contains": "great"})
assert len(items["metadatas"]) == 2
items = collection.get(where_document={"$contains": "bad"})
assert len(items["metadatas"]) == 0
def test_query_where_document(api):
api.reset()
collection = api.create_collection("test_query_where_document")
collection.add(**contains_records)
items = collection.query(
query_embeddings=[1, 0, 0], where_document={"$contains": "doc1"}, n_results=1
)
assert len(items["metadatas"][0]) == 1
items = collection.query(
query_embeddings=[0, 0, 0], where_document={"$contains": "great"}, n_results=2
)
assert len(items["metadatas"][0]) == 2
with pytest.raises(Exception) as e:
items = collection.query(
query_embeddings=[0, 0, 0], where_document={"$contains": "bad"}, n_results=1
)
assert "datapoints" in str(e.value)
def test_delete_where_document(api):
api.reset()
collection = api.create_collection("test_delete_where_document")
collection.add(**contains_records)
collection.delete(where_document={"$contains": "doc1"})
assert collection.count() == 1
collection.delete(where_document={"$contains": "bad"})
assert collection.count() == 1
collection.delete(where_document={"$contains": "great"})
assert collection.count() == 0
logical_operator_records = {
"embeddings": [
[1.1, 2.3, 3.2],
[1.2, 2.24, 3.2],
[1.3, 2.25, 3.2],
[1.4, 2.26, 3.2],
],
"ids": ["id1", "id2", "id3", "id4"],
"metadatas": [
{"int_value": 1, "string_value": "one", "float_value": 1.001, "is": "doc"},
{"int_value": 2, "float_value": 2.002, "string_value": "two", "is": "doc"},
{"int_value": 3, "float_value": 3.003, "string_value": "three", "is": "doc"},
{"int_value": 4, "float_value": 4.004, "string_value": "four", "is": "doc"},
],
"documents": [
"this document is first and great",
"this document is second and great",
"this document is third and great",
"this document is fourth and great",
],
}
def test_where_logical_operators(api):
api.reset()
collection = api.create_collection("test_logical_operators")
collection.add(**logical_operator_records)
items = collection.get(
where={
"$and": [
{"$or": [{"int_value": {"$gte": 3}}, {"float_value": {"$lt": 1.9}}]},
{"is": "doc"},
]
}
)
assert len(items["metadatas"]) == 3
items = collection.get(
where={
"$or": [
{
"$and": [
{"int_value": {"$eq": 3}},
{"string_value": {"$eq": "three"}},
]
},
{
"$and": [
{"int_value": {"$eq": 4}},
{"string_value": {"$eq": "four"}},
]
},
]
}
)
assert len(items["metadatas"]) == 2
items = collection.get(
where={
"$and": [
{
"$or": [
{"int_value": {"$eq": 1}},
{"string_value": {"$eq": "two"}},
]
},
{
"$or": [
{"int_value": {"$eq": 2}},
{"string_value": {"$eq": "one"}},
]
},
]
}
)
assert len(items["metadatas"]) == 2
def test_where_document_logical_operators(api):
api.reset()
collection = api.create_collection("test_document_logical_operators")
collection.add(**logical_operator_records)
items = collection.get(
where_document={
"$and": [
{"$contains": "first"},
{"$contains": "doc"},
]
}
)
assert len(items["metadatas"]) == 1
items = collection.get(
where_document={
"$or": [
{"$contains": "first"},
{"$contains": "second"},
]
}
)
assert len(items["metadatas"]) == 2
items = collection.get(
where_document={
"$or": [
{"$contains": "first"},
{"$contains": "second"},
]
},
where={
"int_value": {"$ne": 2},
},
)
assert len(items["metadatas"]) == 1
# endregion
records = {
"embeddings": [[0, 0, 0], [1.2, 2.24, 3.2]],
"ids": ["id1", "id2"],
"metadatas": [
{"int_value": 1, "string_value": "one", "float_value": 1.001},
{"int_value": 2},
],
"documents": ["this document is first", "this document is second"],
}
def test_query_include(api):
api.reset()
collection = api.create_collection("test_query_include")
collection.add(**records)
items = collection.query(
query_embeddings=[0, 0, 0],
include=["metadatas", "documents", "distances"],
n_results=1,
)
assert items["embeddings"] is None
assert items["ids"][0][0] == "id1"
assert items["metadatas"][0][0]["int_value"] == 1
items = collection.query(
query_embeddings=[0, 0, 0],
include=["embeddings", "documents", "distances"],
n_results=1,
)
assert items["metadatas"] is None
assert items["ids"][0][0] == "id1"
items = collection.query(
query_embeddings=[[0, 0, 0], [1, 2, 1.2]],
include=[],
n_results=2,
)
assert items["documents"] is None
assert items["metadatas"] is None
assert items["embeddings"] is None
assert items["distances"] is None
assert items["ids"][0][0] == "id1"
assert items["ids"][0][1] == "id2"
def test_get_include(api):
api.reset()
collection = api.create_collection("test_get_include")
collection.add(**records)
items = collection.get(include=["metadatas", "documents"], where={"int_value": 1})
assert items["embeddings"] is None
assert items["ids"][0] == "id1"
assert items["metadatas"][0]["int_value"] == 1
assert items["documents"][0] == "this document is first"
items = collection.get(include=["embeddings", "documents"])
assert items["metadatas"] is None
assert items["ids"][0] == "id1"
assert items["embeddings"][1][0] == 1.2
items = collection.get(include=[])
assert items["documents"] is None
assert items["metadatas"] is None
assert items["embeddings"] is None
assert items["ids"][0] == "id1"
with pytest.raises(ValueError, match="include"):
items = collection.get(include=["metadatas", "undefined"])
with pytest.raises(ValueError, match="include"):
items = collection.get(include=None)
# make sure query results are returned in the right order
def test_query_order(api):
api.reset()
collection = api.create_collection("test_query_order")
collection.add(**records)
items = collection.query(
query_embeddings=[1.2, 2.24, 3.2],
include=["metadatas", "documents", "distances"],
n_results=2,
)
assert items["documents"][0][0] == "this document is second"
assert items["documents"][0][1] == "this document is first"
# test to make sure add, get, delete error on invalid id input
def test_invalid_id(api):
api.reset()
collection = api.create_collection("test_invalid_id")
# Add with non-string id
with pytest.raises(ValueError) as e:
collection.add(embeddings=[0, 0, 0], ids=[1], metadatas=[{}])
assert "ID" in str(e.value)
# Get with non-list id
with pytest.raises(ValueError) as e:
collection.get(ids=1)
assert "ID" in str(e.value)
# Delete with malformed ids
with pytest.raises(ValueError) as e:
collection.delete(ids=["valid", 0])
assert "ID" in str(e.value)
def test_index_params(api):
# first standard add
api.reset()
collection = api.create_collection(name="test_index_params")
collection.add(**records)
items = collection.query(
query_embeddings=[0.6, 1.12, 1.6],
n_results=1,
)
assert items["distances"][0][0] > 4
# cosine
api.reset()
collection = api.create_collection(
name="test_index_params",
metadata={"hnsw:space": "cosine", "hnsw:construction_ef": 20, "hnsw:M": 5},
)
collection.add(**records)
items = collection.query(
query_embeddings=[0.6, 1.12, 1.6],
n_results=1,
)
assert items["distances"][0][0] > 0
assert items["distances"][0][0] < 1
# ip
api.reset()
collection = api.create_collection(
name="test_index_params", metadata={"hnsw:space": "ip"}
)
collection.add(**records)
items = collection.query(
query_embeddings=[0.6, 1.12, 1.6],
n_results=1,
)
assert items["distances"][0][0] < -5
def test_invalid_index_params(api):
api.reset()
with pytest.raises(Exception):
collection = api.create_collection(
name="test_index_params", metadata={"hnsw:foobar": "blarg"}
)
collection.add(**records)
with pytest.raises(Exception):
collection = api.create_collection(
name="test_index_params", metadata={"hnsw:space": "foobar"}
)
collection.add(**records)
def test_persist_index_loading_params(api, request):
api = request.getfixturevalue("local_persist_api")
api.reset()
collection = api.create_collection("test", metadata={"hnsw:space": "ip"})
collection.add(ids="id1", documents="hello")
api.persist()
del api
api2 = request.getfixturevalue("local_persist_api_cache_bust")
collection = api2.get_collection("test")
assert collection.metadata["hnsw:space"] == "ip"
nn = collection.query(
query_texts="hello",
n_results=1,
include=["embeddings", "documents", "metadatas", "distances"],
)
for key in nn.keys():
assert len(nn[key]) == 1
def test_add_large(api):
api.reset()
collection = api.create_collection("testspace")
# Test adding a large number of records
large_records = np.random.rand(2000, 512).astype(np.float32).tolist()
collection.add(
embeddings=large_records,
ids=[f"http://example.com/{i}" for i in range(len(large_records))],
)
assert collection.count() == len(large_records)
# test get_version
def test_get_version(api):
api.reset()
version = api.get_version()
# assert version matches the pattern x.y.z
import re
assert re.match(r"\d+\.\d+\.\d+", version)
# test delete_collection
def test_delete_collection(api):
api.reset()
collection = api.create_collection("test_delete_collection")
collection.add(**records)
assert len(api.list_collections()) == 1
api.delete_collection("test_delete_collection")
assert len(api.list_collections()) == 0
# test default embedding function
def test_default_embedding():
embedding_function = DefaultEmbeddingFunction()
docs = ["this is a test" for _ in range(64)]
embeddings = embedding_function(docs)
assert len(embeddings) == 64
def test_multiple_collections(api):
embeddings1 = np.random.rand(10, 512).astype(np.float32).tolist()
embeddings2 = np.random.rand(10, 512).astype(np.float32).tolist()
ids1 = [f"http://example.com/1/{i}" for i in range(len(embeddings1))]
ids2 = [f"http://example.com/2/{i}" for i in range(len(embeddings2))]
api.reset()
coll1 = api.create_collection("coll1")
coll1.add(embeddings=embeddings1, ids=ids1)
coll2 = api.create_collection("coll2")
coll2.add(embeddings=embeddings2, ids=ids2)
assert len(api.list_collections()) == 2
assert coll1.count() == len(embeddings1)
assert coll2.count() == len(embeddings2)
results1 = coll1.query(query_embeddings=embeddings1[0], n_results=1)
results2 = coll2.query(query_embeddings=embeddings2[0], n_results=1)
assert results1["ids"][0][0] == ids1[0]
assert results2["ids"][0][0] == ids2[0]
def test_update_query(api):
api.reset()
collection = api.create_collection("test_update_query")
collection.add(**records)
updated_records = {
"ids": [records["ids"][0]],
"embeddings": [[0.1, 0.2, 0.3]],
"documents": ["updated document"],
"metadatas": [{"foo": "bar"}],
}
collection.update(**updated_records)
# test query
results = collection.query(
query_embeddings=updated_records["embeddings"],
n_results=1,
include=["embeddings", "documents", "metadatas"],
)
assert len(results["ids"][0]) == 1
assert results["ids"][0][0] == updated_records["ids"][0]
assert results["documents"][0][0] == updated_records["documents"][0]
assert results["metadatas"][0][0]["foo"] == "bar"
assert results["embeddings"][0][0] == updated_records["embeddings"][0]
def test_get_nearest_neighbors_where_n_results_more_than_element(api):
api.reset()
collection = api.create_collection("testspace")
collection.add(**records)
results1 = collection.query(
query_embeddings=[[1.1, 2.3, 3.2]],
n_results=5,
where={},
include=["embeddings", "documents", "metadatas", "distances"],
)
for key in results1.keys():
assert len(results1[key][0]) == 2
def test_invalid_n_results_param(api):
api.reset()
collection = api.create_collection("testspace")
collection.add(**records)
with pytest.raises(TypeError) as exc:
collection.query(
query_embeddings=[[1.1, 2.3, 3.2]],
n_results=-1,
where={},
include=["embeddings", "documents", "metadatas", "distances"],
)
assert "Number of requested results -1, cannot be negative, or zero." in str(
exc.value
)
assert exc.type == TypeError
with pytest.raises(ValueError) as exc:
collection.query(
query_embeddings=[[1.1, 2.3, 3.2]],
n_results="one",
where={},
include=["embeddings", "documents", "metadatas", "distances"],
)
assert "int" in str(exc.value)
assert exc.type == ValueError
initial_records = {
"embeddings": [[0, 0, 0], [1.2, 2.24, 3.2], [2.2, 3.24, 4.2]],
"ids": ["id1", "id2", "id3"],
"metadatas": [
{"int_value": 1, "string_value": "one", "float_value": 1.001},
{"int_value": 2},
{"string_value": "three"},
],
"documents": [
"this document is first",
"this document is second",
"this document is third",
],
}
new_records = {
"embeddings": [[3.0, 3.0, 1.1], [3.2, 4.24, 5.2]],
"ids": ["id1", "id4"],
"metadatas": [
{"int_value": 1, "string_value": "one_of_one", "float_value": 1.001},
{"int_value": 4},
],
"documents": [
"this document is even more first",
"this document is new and fourth",
],
}
def test_upsert(api):
api.reset()
collection = api.create_collection("test")
collection.add(**initial_records)
assert collection.count() == 3
collection.upsert(**new_records)
assert collection.count() == 4
get_result = collection.get(
include=["embeddings", "metadatas", "documents"], ids=new_records["ids"][0]
)
assert get_result["embeddings"][0] == new_records["embeddings"][0]
assert get_result["metadatas"][0] == new_records["metadatas"][0]
assert get_result["documents"][0] == new_records["documents"][0]
query_result = collection.query(
query_embeddings=get_result["embeddings"],
n_results=1,
include=["embeddings", "metadatas", "documents"],
)
assert query_result["embeddings"][0][0] == new_records["embeddings"][0]
assert query_result["metadatas"][0][0] == new_records["metadatas"][0]
assert query_result["documents"][0][0] == new_records["documents"][0]
collection.delete(ids=initial_records["ids"][2])
collection.upsert(
ids=initial_records["ids"][2],
embeddings=[[1.1, 0.99, 2.21]],
metadatas=[{"string_value": "a new string value"}],
)
assert collection.count() == 4
get_result = collection.get(
include=["embeddings", "metadatas", "documents"], ids=["id3"]
)
assert get_result["embeddings"][0] == [1.1, 0.99, 2.21]
assert get_result["metadatas"][0] == {"string_value": "a new string value"}
assert get_result["documents"][0] is None
# test to make sure add, query, update, upsert error on invalid embeddings input
def test_invalid_embeddings(api):
api.reset()
collection = api.create_collection("test_invalid_embeddings")
# Add with string embeddings
invalid_records = {
"embeddings": [["0", "0", "0"], ["1.2", "2.24", "3.2"]],
"ids": ["id1", "id2"],
}
with pytest.raises(ValueError) as e:
collection.add(**invalid_records)
assert "embedding" in str(e.value)
# Query with invalid embeddings
with pytest.raises(ValueError) as e:
collection.query(
query_embeddings=[["1.1", "2.3", "3.2"]],
n_results=1,
)
assert "embedding" in str(e.value)
# Update with invalid embeddings
invalid_records = {
"embeddings": [[[0], [0], [0]], [[1.2], [2.24], [3.2]]],
"ids": ["id1", "id2"],
}
with pytest.raises(ValueError) as e:
collection.update(**invalid_records)
assert "embedding" in str(e.value)
# Upsert with invalid embeddings
invalid_records = {
"embeddings": [[[1.1, 2.3, 3.2]], [[1.2, 2.24, 3.2]]],
"ids": ["id1", "id2"],
}
with pytest.raises(ValueError) as e:
collection.upsert(**invalid_records)
assert "embedding" in str(e.value)