Spaces:
Runtime error
Runtime error
Metadata-Version: 2.1 | |
Name: chromadb | |
Version: 0.3.26 | |
Summary: Chroma. | |
Author-email: Jeff Huber <[email protected]>, Anton Troynikov <[email protected]> | |
Project-URL: Homepage, https://github.com/chroma-core/chroma | |
Project-URL: Bug Tracker, https://github.com/chroma-core/chroma/issues | |
Classifier: Programming Language :: Python :: 3 | |
Classifier: License :: OSI Approved :: Apache Software License | |
Classifier: Operating System :: OS Independent | |
Requires-Python: >=3.7 | |
Description-Content-Type: text/markdown | |
License-File: LICENSE | |
Requires-Dist: pandas (>=1.3) | |
Requires-Dist: requests (>=2.28) | |
Requires-Dist: pydantic (>=1.9) | |
Requires-Dist: hnswlib (>=0.7) | |
Requires-Dist: clickhouse-connect (>=0.5.7) | |
Requires-Dist: duckdb (>=0.7.1) | |
Requires-Dist: fastapi (>=0.85.1) | |
Requires-Dist: uvicorn[standard] (>=0.18.3) | |
Requires-Dist: numpy (>=1.21.6) | |
Requires-Dist: posthog (>=2.4.0) | |
Requires-Dist: typing-extensions (>=4.5.0) | |
Requires-Dist: pulsar-client (>=3.1.0) | |
Requires-Dist: onnxruntime (>=1.14.1) | |
Requires-Dist: tokenizers (>=0.13.2) | |
Requires-Dist: tqdm (>=4.65.0) | |
Requires-Dist: overrides (>=7.3.1) | |
Requires-Dist: graphlib-backport (>=1.0.3) ; python_version < "3.9" | |
<p align="center"> | |
<a href="https://trychroma.com"><img src="https://user-images.githubusercontent.com/891664/227103090-6624bf7d-9524-4e05-9d2c-c28d5d451481.png" alt="Chroma logo"></a> | |
</p> | |
<p align="center"> | |
<b>Chroma - the open-source embedding database</b>. <br /> | |
The fastest way to build Python or JavaScript LLM apps with memory! | |
</p> | |
<p align="center"> | |
<a href="https://discord.gg/MMeYNTmh3x" target="_blank"> | |
<img src="https://img.shields.io/discord/1073293645303795742" alt="Discord"> | |
</a> | | |
<a href="https://github.com/chroma-core/chroma/blob/master/LICENSE" target="_blank"> | |
<img src="https://img.shields.io/static/v1?label=license&message=Apache 2.0&color=white" alt="License"> | |
</a> | | |
<a href="https://docs.trychroma.com/" target="_blank"> | |
Docs | |
</a> | | |
<a href="https://www.trychroma.com/" target="_blank"> | |
Homepage | |
</a> | |
</p> | |
<p align="center"> | |
<a href="https://github.com/chroma-core/chroma/actions/workflows/chroma-integration-test.yml" target="_blank"> | |
<img src="https://github.com/chroma-core/chroma/actions/workflows/chroma-integration-test.yml/badge.svg?branch=main" alt="Integration Tests"> | |
</a> | | |
<a href="https://github.com/chroma-core/chroma/actions/workflows/chroma-test.yml" target="_blank"> | |
<img src="https://github.com/chroma-core/chroma/actions/workflows/chroma-test.yml/badge.svg?branch=main" alt="Tests"> | |
</a> | |
</p> | |
```bash | |
pip install chromadb # python client | |
# for javascript, npm install chromadb! | |
# for client-server mode, docker-compose up -d --build | |
``` | |
The core API is only 4 functions (run our [π‘ Google Colab](https://colab.research.google.com/drive/1QEzFyqnoFxq7LUGyP1vzR4iLt9PpCDXv?usp=sharing) or [Replit template](https://replit.com/@swyx/BasicChromaStarter?v=1)): | |
```python | |
import chromadb | |
# setup Chroma in-memory, for easy prototyping. Can add persistence easily! | |
client = chromadb.Client() | |
# Create collection. get_collection, get_or_create_collection, delete_collection also available! | |
collection = client.create_collection("all-my-documents") | |
# Add docs to the collection. Can also update and delete. Row-based API coming soon! | |
collection.add( | |
documents=["This is document1", "This is document2"], # we handle tokenization, embedding, and indexing automatically. You can skip that and add your own embeddings as well | |
metadatas=[{"source": "notion"}, {"source": "google-docs"}], # filter on these! | |
ids=["doc1", "doc2"], # unique for each doc | |
) | |
# Query/search 2 most similar results. You can also .get by id | |
results = collection.query( | |
query_texts=["This is a query document"], | |
n_results=2, | |
# where={"metadata_field": "is_equal_to_this"}, # optional filter | |
# where_document={"$contains":"search_string"} # optional filter | |
) | |
``` | |
## Features | |
- __Simple__: Fully-typed, fully-tested, fully-documented == happiness | |
- __Integrations__: [`π¦οΈπ LangChain`](https://blog.langchain.dev/langchain-chroma/) (python and js), [`π¦ LlamaIndex`](https://twitter.com/atroyn/status/1628557389762007040) and more soon | |
- __Dev, Test, Prod__: the same API that runs in your python notebook, scales to your cluster | |
- __Feature-rich__: Queries, filtering, density estimation and more | |
- __Free & Open Source__: Apache 2.0 Licensed | |
## Use case: ChatGPT for ______ | |
For example, the `"Chat your data"` use case: | |
1. Add documents to your database. You can pass in your own embeddings, embedding function, or let Chroma embed them for you. | |
2. Query relevant documents with natural language. | |
3. Compose documents into the context window of an LLM like `GPT3` for additional summarization or analysis. | |
## Embeddings? | |
What are embeddings? | |
- [Read the guide from OpenAI](https://platform.openai.com/docs/guides/embeddings/what-are-embeddings) | |
- __Literal__: Embedding something turns it from image/text/audio into a list of numbers. πΌοΈ or π => `[1.2, 2.1, ....]`. This process makes documents "understandable" to a machine learning model. | |
- __By analogy__: An embedding represents the essence of a document. This enables documents and queries with the same essence to be "near" each other and therefore easy to find. | |
- __Technical__: An embedding is the latent-space position of a document at a layer of a deep neural network. For models trained specifically to embed data, this is the last layer. | |
- __A small example__: If you search your photos for "famous bridge in San Francisco". By embedding this query and comparing it to the embeddings of your photos and their metadata - it should return photos of the Golden Gate Bridge. | |
Embeddings databases (also known as **vector databases**) store embeddings and allow you to search by nearest neighbors rather than by substrings like a traditional database. By default, Chroma uses [Sentence Transformers](https://docs.trychroma.com/embeddings#default-sentence-transformers) to embed for you but you can also use OpenAI embeddings, Cohere (multilingual) embeddings, or your own. | |
## Get involved | |
Chroma is a rapidly developing project. We welcome PR contributors and ideas for how to improve the project. | |
- [Join the conversation on Discord](https://discord.gg/MMeYNTmh3x) - `#contributing` channel | |
- [Review the π£οΈ Roadmap and contribute your ideas](https://docs.trychroma.com/roadmap) | |
- [Grab an issue and open a PR](https://github.com/chroma-core/chroma/issues) - [`Good first issue tag`](https://github.com/chroma-core/chroma/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22) | |
**Release Cadence** | |
We currently release new tagged versions of the `pypi` and `npm` packages on Mondays. Hotfixes go out at any time during the week. | |
## License | |
[Apache 2.0](./LICENSE) | |