Spaces:
Runtime error
Runtime error
File size: 8,526 Bytes
4a51346 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
Metadata-Version: 2.1
Name: altair
Version: 5.0.1
Summary: Vega-Altair: A declarative statistical visualization library for Python.
Project-URL: Documentation, https://altair-viz.github.io
Project-URL: Source, https://github.com/altair-viz/altair
Author: Vega-Altair Contributors
License-File: LICENSE
Keywords: declarative,interactive,json,statistics,vega-lite,visualization
Classifier: Development Status :: 5 - Production/Stable
Classifier: Environment :: Console
Classifier: Intended Audience :: Science/Research
Classifier: License :: OSI Approved :: BSD License
Classifier: Natural Language :: English
Classifier: Programming Language :: Python :: 3.7
Classifier: Programming Language :: Python :: 3.8
Classifier: Programming Language :: Python :: 3.9
Classifier: Programming Language :: Python :: 3.10
Classifier: Programming Language :: Python :: 3.11
Requires-Python: >=3.7
Requires-Dist: importlib-metadata; python_version < '3.8'
Requires-Dist: jinja2
Requires-Dist: jsonschema>=3.0
Requires-Dist: numpy
Requires-Dist: pandas>=0.18
Requires-Dist: toolz
Requires-Dist: typing-extensions>=4.0.1; python_version < '3.11'
Provides-Extra: dev
Requires-Dist: black<24; extra == 'dev'
Requires-Dist: hatch; extra == 'dev'
Requires-Dist: ipython; extra == 'dev'
Requires-Dist: m2r; extra == 'dev'
Requires-Dist: mypy; extra == 'dev'
Requires-Dist: pandas-stubs; extra == 'dev'
Requires-Dist: pytest; extra == 'dev'
Requires-Dist: pytest-cov; extra == 'dev'
Requires-Dist: ruff; extra == 'dev'
Requires-Dist: types-jsonschema; extra == 'dev'
Requires-Dist: types-setuptools; extra == 'dev'
Requires-Dist: vega-datasets; extra == 'dev'
Requires-Dist: vl-convert-python; extra == 'dev'
Provides-Extra: doc
Requires-Dist: docutils; extra == 'doc'
Requires-Dist: geopandas; extra == 'doc'
Requires-Dist: jinja2; extra == 'doc'
Requires-Dist: myst-parser; extra == 'doc'
Requires-Dist: numpydoc; extra == 'doc'
Requires-Dist: pillow; extra == 'doc'
Requires-Dist: pydata-sphinx-theme; extra == 'doc'
Requires-Dist: sphinx; extra == 'doc'
Requires-Dist: sphinx-copybutton; extra == 'doc'
Requires-Dist: sphinx-design; extra == 'doc'
Requires-Dist: sphinxext-altair; extra == 'doc'
Description-Content-Type: text/markdown
# Vega-Altair <a href="https://altair-viz.github.io/"><img align="right" src="https://altair-viz.github.io/_static/altair-logo-light.png" height="50"></img></a>
[![github actions](https://github.com/altair-viz/altair/workflows/build/badge.svg)](https://github.com/altair-viz/altair/actions?query=workflow%3Abuild)
[![code style black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)
[![JOSS Paper](https://joss.theoj.org/papers/10.21105/joss.01057/status.svg)](https://joss.theoj.org/papers/10.21105/joss.01057)
[![PyPI - Downloads](https://img.shields.io/pypi/dm/altair)](https://pypi.org/project/altair)
**Vega-Altair** is a declarative statistical visualization library for Python. With Vega-Altair, you can spend more time understanding your data and its meaning. Vega-Altair's
API is simple, friendly and consistent and built on top of the powerful
[Vega-Lite](https://github.com/vega/vega-lite) JSON specification. This elegant
simplicity produces beautiful and effective visualizations with a minimal amount of code.
*Vega-Altair was originally developed by [Jake Vanderplas](https://github.com/jakevdp) and [Brian
Granger](https://github.com/ellisonbg) in close collaboration with the [UW
Interactive Data Lab](https://idl.cs.washington.edu/).*
*The Vega-Altair open source project is not affiliated with Altair Engineering, Inc.*
## Documentation
See [Vega-Altair's Documentation Site](https://altair-viz.github.io) as well as the [Tutorial Notebooks](https://github.com/altair-viz/altair_notebooks). You can
run the notebooks directly in your browser by clicking on one of the following badges:
[![Binder](https://beta.mybinder.org/badge.svg)](https://beta.mybinder.org/v2/gh/altair-viz/altair_notebooks/master)
[![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/altair-viz/altair_notebooks/blob/master/notebooks/Index.ipynb)
## Example
Here is an example using Vega-Altair to quickly visualize and display a dataset with the native Vega-Lite renderer in the JupyterLab:
```python
import altair as alt
# load a simple dataset as a pandas DataFrame
from vega_datasets import data
cars = data.cars()
alt.Chart(cars).mark_point().encode(
x='Horsepower',
y='Miles_per_Gallon',
color='Origin',
)
```
![Vega-Altair Visualization](https://raw.githubusercontent.com/altair-viz/altair/master/images/cars.png)
One of the unique features of Vega-Altair, inherited from Vega-Lite, is a declarative grammar of not just visualization, but _interaction_.
With a few modifications to the example above we can create a linked histogram that is filtered based on a selection of the scatter plot.
```python
import altair as alt
from vega_datasets import data
source = data.cars()
brush = alt.selection_interval()
points = alt.Chart(source).mark_point().encode(
x='Horsepower',
y='Miles_per_Gallon',
color=alt.condition(brush, 'Origin', alt.value('lightgray'))
).add_params(
brush
)
bars = alt.Chart(source).mark_bar().encode(
y='Origin',
color='Origin',
x='count(Origin)'
).transform_filter(
brush
)
points & bars
```
![Vega-Altair Visualization Gif](https://raw.githubusercontent.com/altair-viz/altair/master/images/cars_scatter_bar.gif)
## Features
* Carefully-designed, declarative Python API.
* Auto-generated internal Python API that guarantees visualizations are type-checked and
in full conformance with the [Vega-Lite](https://github.com/vega/vega-lite)
specification.
* Display visualizations in JupyterLab, Jupyter Notebook, Visual Studio Code, on GitHub and
[nbviewer](https://nbviewer.jupyter.org/), and many more.
* Export visualizations to various formats such as PNG/SVG images, stand-alone HTML pages and the
[Online Vega-Lite Editor](https://vega.github.io/editor/#/).
* Serialize visualizations as JSON files.
## Installation
Vega-Altair can be installed with:
```bash
pip install altair
```
If you are using the conda package manager, the equivalent is:
```bash
conda install altair -c conda-forge
```
For full installation instructions, please see [the documentation](https://altair-viz.github.io/getting_started/installation.html).
## Getting Help
If you have a question that is not addressed in the documentation,
you can post it on [StackOverflow](https://stackoverflow.com/questions/tagged/altair) using the `altair` tag.
For bugs and feature requests, please open a [Github Issue](https://github.com/altair-viz/altair/issues).
## Development
You can find the instructions on how to install the package for development in [the documentation](https://altair-viz.github.io/getting_started/installation.html).
To run the tests and linters, use
```
hatch run test
```
For information on how to contribute your developments back to the Vega-Altair repository, see
[`CONTRIBUTING.md`](https://github.com/altair-viz/altair/blob/master/CONTRIBUTING.md)
## Citing Vega-Altair
[![JOSS Paper](https://joss.theoj.org/papers/10.21105/joss.01057/status.svg)](https://joss.theoj.org/papers/10.21105/joss.01057)
If you use Vega-Altair in academic work, please consider citing https://joss.theoj.org/papers/10.21105/joss.01057 as
```bib
@article{VanderPlas2018,
doi = {10.21105/joss.01057},
url = {https://doi.org/10.21105/joss.01057},
year = {2018},
publisher = {The Open Journal},
volume = {3},
number = {32},
pages = {1057},
author = {Jacob VanderPlas and Brian Granger and Jeffrey Heer and Dominik Moritz and Kanit Wongsuphasawat and Arvind Satyanarayan and Eitan Lees and Ilia Timofeev and Ben Welsh and Scott Sievert},
title = {Altair: Interactive Statistical Visualizations for Python},
journal = {Journal of Open Source Software}
}
```
Please additionally consider citing the [Vega-Lite](https://vega.github.io/vega-lite/) project, which Vega-Altair is based on: https://dl.acm.org/doi/10.1109/TVCG.2016.2599030
```bib
@article{Satyanarayan2017,
author={Satyanarayan, Arvind and Moritz, Dominik and Wongsuphasawat, Kanit and Heer, Jeffrey},
title={Vega-Lite: A Grammar of Interactive Graphics},
journal={IEEE transactions on visualization and computer graphics},
year={2017},
volume={23},
number={1},
pages={341-350},
publisher={IEEE}
}
```
|