File size: 8,526 Bytes
4a51346
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
Metadata-Version: 2.1
Name: altair
Version: 5.0.1
Summary: Vega-Altair: A declarative statistical visualization library for Python.
Project-URL: Documentation, https://altair-viz.github.io
Project-URL: Source, https://github.com/altair-viz/altair
Author: Vega-Altair Contributors
License-File: LICENSE
Keywords: declarative,interactive,json,statistics,vega-lite,visualization
Classifier: Development Status :: 5 - Production/Stable
Classifier: Environment :: Console
Classifier: Intended Audience :: Science/Research
Classifier: License :: OSI Approved :: BSD License
Classifier: Natural Language :: English
Classifier: Programming Language :: Python :: 3.7
Classifier: Programming Language :: Python :: 3.8
Classifier: Programming Language :: Python :: 3.9
Classifier: Programming Language :: Python :: 3.10
Classifier: Programming Language :: Python :: 3.11
Requires-Python: >=3.7
Requires-Dist: importlib-metadata; python_version < '3.8'
Requires-Dist: jinja2
Requires-Dist: jsonschema>=3.0
Requires-Dist: numpy
Requires-Dist: pandas>=0.18
Requires-Dist: toolz
Requires-Dist: typing-extensions>=4.0.1; python_version < '3.11'
Provides-Extra: dev
Requires-Dist: black<24; extra == 'dev'
Requires-Dist: hatch; extra == 'dev'
Requires-Dist: ipython; extra == 'dev'
Requires-Dist: m2r; extra == 'dev'
Requires-Dist: mypy; extra == 'dev'
Requires-Dist: pandas-stubs; extra == 'dev'
Requires-Dist: pytest; extra == 'dev'
Requires-Dist: pytest-cov; extra == 'dev'
Requires-Dist: ruff; extra == 'dev'
Requires-Dist: types-jsonschema; extra == 'dev'
Requires-Dist: types-setuptools; extra == 'dev'
Requires-Dist: vega-datasets; extra == 'dev'
Requires-Dist: vl-convert-python; extra == 'dev'
Provides-Extra: doc
Requires-Dist: docutils; extra == 'doc'
Requires-Dist: geopandas; extra == 'doc'
Requires-Dist: jinja2; extra == 'doc'
Requires-Dist: myst-parser; extra == 'doc'
Requires-Dist: numpydoc; extra == 'doc'
Requires-Dist: pillow; extra == 'doc'
Requires-Dist: pydata-sphinx-theme; extra == 'doc'
Requires-Dist: sphinx; extra == 'doc'
Requires-Dist: sphinx-copybutton; extra == 'doc'
Requires-Dist: sphinx-design; extra == 'doc'
Requires-Dist: sphinxext-altair; extra == 'doc'
Description-Content-Type: text/markdown

# Vega-Altair <a href="https://altair-viz.github.io/"><img align="right" src="https://altair-viz.github.io/_static/altair-logo-light.png" height="50"></img></a>


[![github actions](https://github.com/altair-viz/altair/workflows/build/badge.svg)](https://github.com/altair-viz/altair/actions?query=workflow%3Abuild)
[![code style black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)
[![JOSS Paper](https://joss.theoj.org/papers/10.21105/joss.01057/status.svg)](https://joss.theoj.org/papers/10.21105/joss.01057)
[![PyPI - Downloads](https://img.shields.io/pypi/dm/altair)](https://pypi.org/project/altair)

**Vega-Altair** is a declarative statistical visualization library for Python. With Vega-Altair, you can spend more time understanding your data and its meaning. Vega-Altair's
API is simple, friendly and consistent and built on top of the powerful
[Vega-Lite](https://github.com/vega/vega-lite) JSON specification. This elegant
simplicity produces beautiful and effective visualizations with a minimal amount of code. 

*Vega-Altair was originally developed by [Jake Vanderplas](https://github.com/jakevdp) and [Brian
Granger](https://github.com/ellisonbg) in close collaboration with the [UW
Interactive Data Lab](https://idl.cs.washington.edu/).*
*The Vega-Altair open source project is not affiliated with Altair Engineering, Inc.*

## Documentation

See [Vega-Altair's Documentation Site](https://altair-viz.github.io) as well as the [Tutorial Notebooks](https://github.com/altair-viz/altair_notebooks). You can
run the notebooks directly in your browser by clicking on one of the following badges:

[![Binder](https://beta.mybinder.org/badge.svg)](https://beta.mybinder.org/v2/gh/altair-viz/altair_notebooks/master)
[![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/altair-viz/altair_notebooks/blob/master/notebooks/Index.ipynb)

## Example

Here is an example using Vega-Altair to quickly visualize and display a dataset with the native Vega-Lite renderer in the JupyterLab:

```python
import altair as alt

# load a simple dataset as a pandas DataFrame
from vega_datasets import data
cars = data.cars()

alt.Chart(cars).mark_point().encode(
    x='Horsepower',
    y='Miles_per_Gallon',
    color='Origin',
)
```

![Vega-Altair Visualization](https://raw.githubusercontent.com/altair-viz/altair/master/images/cars.png)

One of the unique features of Vega-Altair, inherited from Vega-Lite, is a declarative grammar of not just visualization, but _interaction_. 
With a few modifications to the example above we can create a linked histogram that is filtered based on a selection of the scatter plot.

```python 
import altair as alt
from vega_datasets import data

source = data.cars()

brush = alt.selection_interval()

points = alt.Chart(source).mark_point().encode(
    x='Horsepower',
    y='Miles_per_Gallon',
    color=alt.condition(brush, 'Origin', alt.value('lightgray'))
).add_params(
    brush
)

bars = alt.Chart(source).mark_bar().encode(
    y='Origin',
    color='Origin',
    x='count(Origin)'
).transform_filter(
    brush
)

points & bars
```

![Vega-Altair Visualization Gif](https://raw.githubusercontent.com/altair-viz/altair/master/images/cars_scatter_bar.gif)

## Features
* Carefully-designed, declarative Python API.
* Auto-generated internal Python API that guarantees visualizations are type-checked and
  in full conformance with the [Vega-Lite](https://github.com/vega/vega-lite)
  specification.
* Display visualizations in JupyterLab, Jupyter Notebook, Visual Studio Code, on GitHub and
  [nbviewer](https://nbviewer.jupyter.org/), and many more.
* Export visualizations to various formats such as PNG/SVG images, stand-alone HTML pages and the
[Online Vega-Lite Editor](https://vega.github.io/editor/#/).
* Serialize visualizations as JSON files.

## Installation
Vega-Altair can be installed with:
```bash
pip install altair
```

If you are using the conda package manager, the equivalent is:
```bash
conda install altair -c conda-forge
```

For full installation instructions, please see [the documentation](https://altair-viz.github.io/getting_started/installation.html).

## Getting Help
If you have a question that is not addressed in the documentation, 
you can post it on [StackOverflow](https://stackoverflow.com/questions/tagged/altair) using the `altair` tag.
For bugs and feature requests, please open a [Github Issue](https://github.com/altair-viz/altair/issues).

## Development
You can find the instructions on how to install the package for development in [the documentation](https://altair-viz.github.io/getting_started/installation.html).

To run the tests and linters, use
```
hatch run test
```

For information on how to contribute your developments back to the Vega-Altair repository, see
[`CONTRIBUTING.md`](https://github.com/altair-viz/altair/blob/master/CONTRIBUTING.md)

## Citing Vega-Altair
[![JOSS Paper](https://joss.theoj.org/papers/10.21105/joss.01057/status.svg)](https://joss.theoj.org/papers/10.21105/joss.01057)

If you use Vega-Altair in academic work, please consider citing https://joss.theoj.org/papers/10.21105/joss.01057 as

```bib
@article{VanderPlas2018,
    doi = {10.21105/joss.01057},
    url = {https://doi.org/10.21105/joss.01057},
    year = {2018},
    publisher = {The Open Journal},
    volume = {3},
    number = {32},
    pages = {1057},
    author = {Jacob VanderPlas and Brian Granger and Jeffrey Heer and Dominik Moritz and Kanit Wongsuphasawat and Arvind Satyanarayan and Eitan Lees and Ilia Timofeev and Ben Welsh and Scott Sievert},
    title = {Altair: Interactive Statistical Visualizations for Python},
    journal = {Journal of Open Source Software}
}
```
Please additionally consider citing the [Vega-Lite](https://vega.github.io/vega-lite/) project, which Vega-Altair is based on: https://dl.acm.org/doi/10.1109/TVCG.2016.2599030
```bib
@article{Satyanarayan2017,
    author={Satyanarayan, Arvind and Moritz, Dominik and Wongsuphasawat, Kanit and Heer, Jeffrey},
    title={Vega-Lite: A Grammar of Interactive Graphics},
    journal={IEEE transactions on visualization and computer graphics},
    year={2017},
    volume={23},
    number={1},
    pages={341-350},
    publisher={IEEE}
} 
```