File size: 16,026 Bytes
4a51346
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
from chromadb.api.types import Documents, EmbeddingFunction, Embeddings
from pathlib import Path
import os
import tarfile
import requests
from typing import Any, Dict, List, cast
import numpy as np
import numpy.typing as npt
import importlib
from typing import Optional

try:
    from chromadb.is_thin_client import is_thin_client
except ImportError:
    is_thin_client = False


class SentenceTransformerEmbeddingFunction(EmbeddingFunction):
    # Since we do dynamic imports we have to type this as Any
    models: Dict[str, Any] = {}

    # If you have a beefier machine, try "gtr-t5-large".
    # for a full list of options: https://huggingface.co/sentence-transformers, https://www.sbert.net/docs/pretrained_models.html
    def __init__(self, model_name: str = "all-MiniLM-L6-v2", device: str = "cpu"):
        if model_name not in self.models:
            try:
                from sentence_transformers import SentenceTransformer
            except ImportError:
                raise ValueError(
                    "The sentence_transformers python package is not installed. Please install it with `pip install sentence_transformers`"
                )
            self.models[model_name] = SentenceTransformer(model_name, device=device)
        self._model = self.models[model_name]

    def __call__(self, texts: Documents) -> Embeddings:
        return self._model.encode(list(texts), convert_to_numpy=True).tolist()  # type: ignore # noqa E501


class Text2VecEmbeddingFunction(EmbeddingFunction):
    def __init__(self, model_name: str = "shibing624/text2vec-base-chinese"):
        try:
            from text2vec import SentenceModel
        except ImportError:
            raise ValueError(
                "The text2vec python package is not installed. Please install it with `pip install text2vec`"
            )
        self._model = SentenceModel(model_name_or_path=model_name)

    def __call__(self, texts: Documents) -> Embeddings:
        return self._model.encode(list(texts), convert_to_numpy=True).tolist()  # type: ignore # noqa E501


class OpenAIEmbeddingFunction(EmbeddingFunction):
    def __init__(
        self,
        api_key: Optional[str] = None,
        model_name: str = "text-embedding-ada-002",
        organization_id: Optional[str] = None,
        api_base: Optional[str] = None,
        api_type: Optional[str] = None,
    ):
        """
        Initialize the OpenAIEmbeddingFunction.

        Args:
            api_key (str, optional): Your API key for the OpenAI API. If not
                provided, it will raise an error to provide an OpenAI API key.
            organization_id(str, optional): The OpenAI organization ID if applicable
            model_name (str, optional): The name of the model to use for text
                embeddings. Defaults to "text-embedding-ada-002".
            api_base (str, optional): The base path for the API. If not provided,
                it will use the base path for the OpenAI API. This can be used to
                point to a different deployment, such as an Azure deployment.
            api_type (str, optional): The type of the API deployment. This can be
                used to specify a different deployment, such as 'azure'. If not
                provided, it will use the default OpenAI deployment.

        """
        try:
            import openai
        except ImportError:
            raise ValueError(
                "The openai python package is not installed. Please install it with `pip install openai`"
            )

        if api_key is not None:
            openai.api_key = api_key
        # If the api key is still not set, raise an error
        elif openai.api_key is None:
            raise ValueError(
                "Please provide an OpenAI API key. You can get one at https://platform.openai.com/account/api-keys"
            )

        if api_base is not None:
            openai.api_base = api_base

        if api_type is not None:
            openai.api_type = api_type

        if organization_id is not None:
            openai.organization = organization_id

        self._client = openai.Embedding
        self._model_name = model_name

    def __call__(self, texts: Documents) -> Embeddings:
        # replace newlines, which can negatively affect performance.
        texts = [t.replace("\n", " ") for t in texts]

        # Call the OpenAI Embedding API
        embeddings = self._client.create(input=texts, engine=self._model_name)["data"]

        # Sort resulting embeddings by index
        sorted_embeddings = sorted(embeddings, key=lambda e: e["index"])  # type: ignore

        # Return just the embeddings
        return [result["embedding"] for result in sorted_embeddings]


class CohereEmbeddingFunction(EmbeddingFunction):
    def __init__(self, api_key: str, model_name: str = "large"):
        try:
            import cohere
        except ImportError:
            raise ValueError(
                "The cohere python package is not installed. Please install it with `pip install cohere`"
            )

        self._client = cohere.Client(api_key)
        self._model_name = model_name

    def __call__(self, texts: Documents) -> Embeddings:
        # Call Cohere Embedding API for each document.
        return [
            embeddings
            for embeddings in self._client.embed(texts=texts, model=self._model_name)
        ]


class HuggingFaceEmbeddingFunction(EmbeddingFunction):
    def __init__(
        self, api_key: str, model_name: str = "sentence-transformers/all-MiniLM-L6-v2"
    ):
        try:
            import requests
        except ImportError:
            raise ValueError(
                "The requests python package is not installed. Please install it with `pip install requests`"
            )
        self._api_url = f"https://api-inference.huggingface.co/pipeline/feature-extraction/{model_name}"
        self._session = requests.Session()
        self._session.headers.update({"Authorization": f"Bearer {api_key}"})

    def __call__(self, texts: Documents) -> Embeddings:
        # Call HuggingFace Embedding API for each document
        return self._session.post(  # type: ignore
            self._api_url, json={"inputs": texts, "options": {"wait_for_model": True}}
        ).json()


class InstructorEmbeddingFunction(EmbeddingFunction):
    # If you have a GPU with at least 6GB try model_name = "hkunlp/instructor-xl" and device = "cuda"
    # for a full list of options: https://github.com/HKUNLP/instructor-embedding#model-list
    def __init__(
        self,
        model_name: str = "hkunlp/instructor-base",
        device: str = "cpu",
        instruction: Optional[str] = None,
    ):
        try:
            from InstructorEmbedding import INSTRUCTOR
        except ImportError:
            raise ValueError(
                "The InstructorEmbedding python package is not installed. Please install it with `pip install InstructorEmbedding`"
            )
        self._model = INSTRUCTOR(model_name, device=device)
        self._instruction = instruction

    def __call__(self, texts: Documents) -> Embeddings:
        if self._instruction is None:
            return self._model.encode(texts).tolist()

        texts_with_instructions = [[self._instruction, text] for text in texts]
        return self._model.encode(texts_with_instructions).tolist()


# In order to remove dependencies on sentence-transformers, which in turn depends on
# pytorch and sentence-piece we have created a default ONNX embedding function that
# implements the same functionality as "all-MiniLM-L6-v2" from sentence-transformers.
# visit https://github.com/chroma-core/onnx-embedding for the source code to generate
# and verify the ONNX model.
class ONNXMiniLM_L6_V2(EmbeddingFunction):
    MODEL_NAME = "all-MiniLM-L6-v2"
    DOWNLOAD_PATH = Path.home() / ".cache" / "chroma" / "onnx_models" / MODEL_NAME
    EXTRACTED_FOLDER_NAME = "onnx"
    ARCHIVE_FILENAME = "onnx.tar.gz"
    MODEL_DOWNLOAD_URL = (
        "https://chroma-onnx-models.s3.amazonaws.com/all-MiniLM-L6-v2/onnx.tar.gz"
    )
    tokenizer = None
    model = None

    # https://github.com/python/mypy/issues/7291 mypy makes you type the constructor if
    # no args
    def __init__(self) -> None:
        # Import dependencies on demand to mirror other embedding functions. This
        # breaks typechecking, thus the ignores.
        try:
            # Equivalent to import onnxruntime
            self.ort = importlib.import_module("onnxruntime")
        except ImportError:
            raise ValueError(
                "The onnxruntime python package is not installed. Please install it with `pip install onnxruntime`"
            )
        try:
            # Equivalent to from tokenizers import Tokenizer
            self.Tokenizer = importlib.import_module("tokenizers").Tokenizer
        except ImportError:
            raise ValueError(
                "The tokenizers python package is not installed. Please install it with `pip install tokenizers`"
            )
        try:
            # Equivalent to from tqdm import tqdm
            self.tqdm = importlib.import_module("tqdm").tqdm
        except ImportError:
            raise ValueError(
                "The tqdm python package is not installed. Please install it with `pip install tqdm`"
            )

    # Borrowed from https://gist.github.com/yanqd0/c13ed29e29432e3cf3e7c38467f42f51
    # Download with tqdm to preserve the sentence-transformers experience
    def _download(self, url: str, fname: Path, chunk_size: int = 1024) -> None:
        resp = requests.get(url, stream=True)
        total = int(resp.headers.get("content-length", 0))
        with open(fname, "wb") as file, self.tqdm(
            desc=str(fname),
            total=total,
            unit="iB",
            unit_scale=True,
            unit_divisor=1024,
        ) as bar:
            for data in resp.iter_content(chunk_size=chunk_size):
                size = file.write(data)
                bar.update(size)

    # Use pytorches default epsilon for division by zero
    # https://pytorch.org/docs/stable/generated/torch.nn.functional.normalize.html
    def _normalize(self, v: npt.NDArray) -> npt.NDArray:
        norm = np.linalg.norm(v, axis=1)
        norm[norm == 0] = 1e-12
        return v / norm[:, np.newaxis]

    def _forward(self, documents: List[str], batch_size: int = 32) -> npt.NDArray:
        # We need to cast to the correct type because the type checker doesn't know that init_model_and_tokenizer will set the values
        self.tokenizer = cast(self.Tokenizer, self.tokenizer)  # type: ignore
        self.model = cast(self.ort.InferenceSession, self.model)  # type: ignore
        all_embeddings = []
        for i in range(0, len(documents), batch_size):
            batch = documents[i : i + batch_size]
            encoded = [self.tokenizer.encode(d) for d in batch]
            input_ids = np.array([e.ids for e in encoded])
            attention_mask = np.array([e.attention_mask for e in encoded])
            onnx_input = {
                "input_ids": np.array(input_ids, dtype=np.int64),
                "attention_mask": np.array(attention_mask, dtype=np.int64),
                "token_type_ids": np.array(
                    [np.zeros(len(e), dtype=np.int64) for e in input_ids],
                    dtype=np.int64,
                ),
            }
            model_output = self.model.run(None, onnx_input)
            last_hidden_state = model_output[0]
            # Perform mean pooling with attention weighting
            input_mask_expanded = np.broadcast_to(
                np.expand_dims(attention_mask, -1), last_hidden_state.shape
            )
            embeddings = np.sum(last_hidden_state * input_mask_expanded, 1) / np.clip(
                input_mask_expanded.sum(1), a_min=1e-9, a_max=None
            )
            embeddings = self._normalize(embeddings).astype(np.float32)
            all_embeddings.append(embeddings)
        return np.concatenate(all_embeddings)

    def _init_model_and_tokenizer(self) -> None:
        if self.model is None and self.tokenizer is None:
            self.tokenizer = self.Tokenizer.from_file(
                str(self.DOWNLOAD_PATH / self.EXTRACTED_FOLDER_NAME / "tokenizer.json")
            )
            # max_seq_length = 256, for some reason sentence-transformers uses 256 even though the HF config has a max length of 128
            # https://github.com/UKPLab/sentence-transformers/blob/3e1929fddef16df94f8bc6e3b10598a98f46e62d/docs/_static/html/models_en_sentence_embeddings.html#LL480
            self.tokenizer.enable_truncation(max_length=256)
            self.tokenizer.enable_padding(pad_id=0, pad_token="[PAD]", length=256)
            self.model = self.ort.InferenceSession(
                str(self.DOWNLOAD_PATH / self.EXTRACTED_FOLDER_NAME / "model.onnx")
            )

    def __call__(self, texts: Documents) -> Embeddings:
        # Only download the model when it is actually used
        self._download_model_if_not_exists()
        self._init_model_and_tokenizer()
        res = cast(Embeddings, self._forward(texts).tolist())
        return res

    def _download_model_if_not_exists(self) -> None:
        # Model is not downloaded yet
        if not os.path.exists(self.DOWNLOAD_PATH / self.ARCHIVE_FILENAME):
            os.makedirs(self.DOWNLOAD_PATH, exist_ok=True)
            self._download(
                self.MODEL_DOWNLOAD_URL, self.DOWNLOAD_PATH / self.ARCHIVE_FILENAME
            )
            with tarfile.open(
                self.DOWNLOAD_PATH / self.ARCHIVE_FILENAME, "r:gz"
            ) as tar:
                tar.extractall(self.DOWNLOAD_PATH)


def DefaultEmbeddingFunction() -> Optional[EmbeddingFunction]:
    if is_thin_client:
        return None
    else:
        return ONNXMiniLM_L6_V2()


class GooglePalmEmbeddingFunction(EmbeddingFunction):
    """To use this EmbeddingFunction, you must have the google.generativeai Python package installed and have a PaLM API key."""

    def __init__(self, api_key: str, model_name: str = "models/embedding-gecko-001"):
        if not api_key:
            raise ValueError("Please provide a PaLM API key.")

        if not model_name:
            raise ValueError("Please provide the model name.")

        try:
            import google.generativeai as palm
        except ImportError:
            raise ValueError(
                "The Google Generative AI python package is not installed. Please install it with `pip install google-generativeai`"
            )

        palm.configure(api_key=api_key)
        self._palm = palm
        self._model_name = model_name

    def __call__(self, texts: Documents) -> Embeddings:
        return [
            self._palm.generate_embeddings(model=self._model_name, text=text)[
                "embedding"
            ]
            for text in texts
        ]

class GoogleVertexEmbeddingFunction(EmbeddingFunction):
    # Follow API Quickstart for Google Vertex AI
    # https://cloud.google.com/vertex-ai/docs/generative-ai/start/quickstarts/api-quickstart
    # Information about the text embedding modules in Google Vertex AI
    # https://cloud.google.com/vertex-ai/docs/generative-ai/embeddings/get-text-embeddings
    def __init__(
        self,
        api_key: str,
        model_name: str = "textembedding-gecko-001",
        project_id: str = "cloud-large-language-models",
        region: str = "us-central1",
    ):
        self._api_url = f"https://{region}-aiplatform.googleapis.com/v1/projects/{project_id}/locations/{region}/endpoints/{model_name}:predict"
        self._session = requests.Session()
        self._session.headers.update({"Authorization": f"Bearer {api_key}"})

    def __call__(self, texts: Documents) -> Embeddings:
        response = self._session.post(
            self._api_url, json={"instances": [{"content": texts}]}
        ).json()

        if "predictions" in response:
            return response["predictions"]
        return {}