File size: 22,262 Bytes
4a51346
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
# type: ignore
from chromadb.api.types import (
    Documents,
    Embeddings,
    IDs,
    Metadatas,
    Where,
    WhereDocument,
)
from chromadb.db import DB
from chromadb.db.index.hnswlib import Hnswlib, delete_all_indexes
import uuid
import json
from typing import Optional, Sequence, List, Tuple, cast
import clickhouse_connect
from clickhouse_connect.driver.client import Client
from clickhouse_connect import common
import logging
from uuid import UUID
from chromadb.config import System
from overrides import override
import numpy.typing as npt
from chromadb.api.types import Metadata

logger = logging.getLogger(__name__)

COLLECTION_TABLE_SCHEMA = [{"uuid": "UUID"}, {"name": "String"}, {"metadata": "String"}]

EMBEDDING_TABLE_SCHEMA = [
    {"collection_uuid": "UUID"},
    {"uuid": "UUID"},
    {"embedding": "Array(Float64)"},
    {"document": "Nullable(String)"},
    {"id": "Nullable(String)"},
    {"metadata": "Nullable(String)"},
]


def db_array_schema_to_clickhouse_schema(table_schema):
    return_str = ""
    for element in table_schema:
        for k, v in element.items():
            return_str += f"{k} {v}, "
    return return_str


def db_schema_to_keys() -> List[str]:
    keys = []
    for element in EMBEDDING_TABLE_SCHEMA:
        keys.append(list(element.keys())[0])
    return keys


class Clickhouse(DB):
    #
    #  INIT METHODS
    #
    def __init__(self, system: System):
        super().__init__(system)
        self._conn = None
        self._settings = system.settings

        self._settings.require("clickhouse_host")
        self._settings.require("clickhouse_port")

    def _init_conn(self):
        common.set_setting("autogenerate_session_id", False)
        self._conn = clickhouse_connect.get_client(
            host=self._settings.clickhouse_host,
            port=int(self._settings.clickhouse_port),
        )
        self._create_table_collections(self._conn)
        self._create_table_embeddings(self._conn)

    def _get_conn(self) -> Client:
        if self._conn is None:
            self._init_conn()
        return self._conn

    def _create_table_collections(self, conn):
        conn.command(
            f"""CREATE TABLE IF NOT EXISTS collections (
            {db_array_schema_to_clickhouse_schema(COLLECTION_TABLE_SCHEMA)}
        ) ENGINE = MergeTree() ORDER BY uuid"""
        )

    def _create_table_embeddings(self, conn):
        conn.command(
            f"""CREATE TABLE IF NOT EXISTS embeddings (
            {db_array_schema_to_clickhouse_schema(EMBEDDING_TABLE_SCHEMA)}
        ) ENGINE = MergeTree() ORDER BY collection_uuid"""
        )

    index_cache = {}

    def _index(self, collection_id):
        """Retrieve an HNSW index instance for the given collection"""

        if collection_id not in self.index_cache:
            coll = self.get_collection_by_id(collection_id)
            collection_metadata = coll[2]
            index = Hnswlib(
                collection_id,
                self._settings,
                collection_metadata,
                self.count(collection_id),
            )
            self.index_cache[collection_id] = index

        return self.index_cache[collection_id]

    def _delete_index(self, collection_id):
        """Delete an index from the cache"""
        index = self._index(collection_id)
        index.delete()
        del self.index_cache[collection_id]

    #
    #  UTILITY METHODS
    #
    @override
    def persist(self):
        raise NotImplementedError(
            "Clickhouse is a persistent database, this method is not needed"
        )

    @override
    def get_collection_uuid_from_name(self, collection_name: str) -> UUID:
        res = self._get_conn().query(
            f"""
            SELECT uuid FROM collections WHERE name = '{collection_name}'
        """
        )
        return res.result_rows[0][0]

    def _create_where_clause(
        self,
        collection_uuid: str,
        ids: Optional[List[str]] = None,
        where: Where = {},
        where_document: WhereDocument = {},
    ):
        where_clauses: List[str] = []
        self._format_where(where, where_clauses)
        if len(where_document) > 0:
            where_document_clauses = []
            self._format_where_document(where_document, where_document_clauses)
            where_clauses.extend(where_document_clauses)

        if ids is not None:
            where_clauses.append(f" id IN {tuple(ids)}")

        where_clauses.append(f"collection_uuid = '{collection_uuid}'")
        where_str = " AND ".join(where_clauses)
        where_str = f"WHERE {where_str}"
        return where_str

    #
    #  COLLECTION METHODS
    #
    @override
    def create_collection(
        self,
        name: str,
        metadata: Optional[Metadata] = None,
        get_or_create: bool = False,
    ) -> Sequence:
        # poor man's unique constraint
        dupe_check = self.get_collection(name)

        if len(dupe_check) > 0:
            if get_or_create:
                if dupe_check[0][2] != metadata:
                    self.update_collection(
                        dupe_check[0][0], new_name=name, new_metadata=metadata
                    )
                    dupe_check = self.get_collection(name)
                logger.info(
                    f"collection with name {name} already exists, returning existing collection"
                )
                return dupe_check
            else:
                raise ValueError(f"Collection with name {name} already exists")

        collection_uuid = uuid.uuid4()
        data_to_insert = [[collection_uuid, name, json.dumps(metadata)]]

        self._get_conn().insert(
            "collections", data_to_insert, column_names=["uuid", "name", "metadata"]
        )
        return [[collection_uuid, name, metadata]]

    @override
    def get_collection(self, name: str) -> Sequence:
        res = (
            self._get_conn()
            .query(
                f"""
         SELECT * FROM collections WHERE name = '{name}'
         """
            )
            .result_rows
        )
        # json.loads the metadata
        return [[x[0], x[1], json.loads(x[2])] for x in res]

    def get_collection_by_id(self, collection_uuid: str):
        res = (
            self._get_conn()
            .query(
                f"""
         SELECT * FROM collections WHERE uuid = '{collection_uuid}'
         """
            )
            .result_rows
        )
        # json.loads the metadata
        return [[x[0], x[1], json.loads(x[2])] for x in res][0]

    @override
    def list_collections(self) -> Sequence:
        res = self._get_conn().query("SELECT * FROM collections").result_rows
        return [[x[0], x[1], json.loads(x[2])] for x in res]

    @override
    def update_collection(
        self,
        id: UUID,
        new_name: Optional[str] = None,
        new_metadata: Optional[Metadata] = None,
    ):
        if new_name is not None:
            dupe_check = self.get_collection(new_name)
            if len(dupe_check) > 0 and dupe_check[0][0] != id:
                raise ValueError(f"Collection with name {new_name} already exists")

            self._get_conn().command(
                "ALTER TABLE collections UPDATE name = %(new_name)s WHERE uuid = %(uuid)s",
                parameters={"new_name": new_name, "uuid": id},
            )

        if new_metadata is not None:
            self._get_conn().command(
                "ALTER TABLE collections UPDATE metadata = %(new_metadata)s WHERE uuid = %(uuid)s",
                parameters={"new_metadata": json.dumps(new_metadata), "uuid": id},
            )

    @override
    def delete_collection(self, name: str):
        collection_uuid = self.get_collection_uuid_from_name(name)
        self._get_conn().command(
            f"""
        DELETE FROM embeddings WHERE collection_uuid = '{collection_uuid}'
        """
        )

        self._delete_index(collection_uuid)

        self._get_conn().command(
            f"""
         DELETE FROM collections WHERE name = '{name}'
         """
        )

    #
    #  ITEM METHODS
    #
    @override
    def add(self, collection_uuid, embeddings, metadatas, documents, ids) -> List[UUID]:
        data_to_insert = [
            [
                collection_uuid,
                uuid.uuid4(),
                embedding,
                json.dumps(metadatas[i]) if metadatas else None,
                documents[i] if documents else None,
                ids[i],
            ]
            for i, embedding in enumerate(embeddings)
        ]
        column_names = [
            "collection_uuid",
            "uuid",
            "embedding",
            "metadata",
            "document",
            "id",
        ]
        self._get_conn().insert("embeddings", data_to_insert, column_names=column_names)

        return [x[1] for x in data_to_insert]  # return uuids

    def _update(
        self,
        collection_uuid,
        ids: IDs,
        embeddings: Optional[Embeddings],
        metadatas: Optional[Metadatas],
        documents: Optional[Documents],
    ):
        updates = []
        parameters = {}
        for i in range(len(ids)):
            update_fields = []
            parameters[f"i{i}"] = ids[i]
            if embeddings is not None:
                update_fields.append(f"embedding = %(e{i})s")
                parameters[f"e{i}"] = embeddings[i]
            if metadatas is not None:
                update_fields.append(f"metadata = %(m{i})s")
                parameters[f"m{i}"] = json.dumps(metadatas[i])
            if documents is not None:
                update_fields.append(f"document = %(d{i})s")
                parameters[f"d{i}"] = documents[i]

            update_statement = f"""
            UPDATE
                {",".join(update_fields)}
            WHERE
                id = %(i{i})s AND
                collection_uuid = '{collection_uuid}'{"" if i == len(ids) - 1 else ","}
            """
            updates.append(update_statement)

        update_clauses = ("").join(updates)
        self._get_conn().command(
            f"ALTER TABLE embeddings {update_clauses}", parameters=parameters
        )

    @override
    def update(
        self,
        collection_uuid,
        ids: IDs,
        embeddings: Optional[Embeddings] = None,
        metadatas: Optional[Metadatas] = None,
        documents: Optional[Documents] = None,
    ) -> bool:
        # Verify all IDs exist
        existing_items = self.get(collection_uuid=collection_uuid, ids=ids)
        if len(existing_items) != len(ids):
            raise ValueError(
                f"Could not find {len(ids) - len(existing_items)} items for update"
            )

        # Update the db
        self._update(collection_uuid, ids, embeddings, metadatas, documents)

        # Update the index
        if embeddings is not None:
            # `get` current returns items in arbitrary order.
            # TODO if we fix `get`, we can remove this explicit mapping.
            uuid_mapping = {r[4]: r[1] for r in existing_items}
            update_uuids = [uuid_mapping[id] for id in ids]
            index = self._index(collection_uuid)
            index.add(update_uuids, embeddings, update=True)

    def _get(self, where={}, columns: Optional[List] = None):
        select_columns = db_schema_to_keys() if columns is None else columns
        val = (
            self._get_conn()
            .query(f"""SELECT {",".join(select_columns)} FROM embeddings {where}""")
            .result_rows
        )
        for i in range(len(val)):
            # We know val has index abilities, so cast it for typechecker
            val = cast(list, val)
            val[i] = list(val[i])
            # json.load the metadata
            if "metadata" in select_columns:
                metadata_column_index = select_columns.index("metadata")
                db_metadata = val[i][metadata_column_index]
                val[i][metadata_column_index] = (
                    json.loads(db_metadata) if db_metadata else None
                )
        return val

    def _format_where(self, where, result):
        for key, value in where.items():

            def has_key_and(clause):
                return f"(JSONHas(metadata,'{key}') = 1 AND {clause})"

            # Shortcut for $eq
            if type(value) == str:
                result.append(
                    has_key_and(f" JSONExtractString(metadata,'{key}') = '{value}'")
                )
            elif type(value) == int:
                result.append(
                    has_key_and(f" JSONExtractInt(metadata,'{key}') = {value}")
                )
            elif type(value) == float:
                result.append(
                    has_key_and(f" JSONExtractFloat(metadata,'{key}') = {value}")
                )
            # Operator expression
            elif type(value) == dict:
                operator, operand = list(value.items())[0]
                if operator == "$gt":
                    return result.append(
                        has_key_and(f" JSONExtractFloat(metadata,'{key}') > {operand}")
                    )
                elif operator == "$lt":
                    return result.append(
                        has_key_and(f" JSONExtractFloat(metadata,'{key}') < {operand}")
                    )
                elif operator == "$gte":
                    return result.append(
                        has_key_and(f" JSONExtractFloat(metadata,'{key}') >= {operand}")
                    )
                elif operator == "$lte":
                    return result.append(
                        has_key_and(f" JSONExtractFloat(metadata,'{key}') <= {operand}")
                    )
                elif operator == "$ne":
                    if type(operand) == str:
                        return result.append(
                            has_key_and(
                                f" JSONExtractString(metadata,'{key}') != '{operand}'"
                            )
                        )
                    return result.append(
                        has_key_and(f" JSONExtractFloat(metadata,'{key}') != {operand}")
                    )
                elif operator == "$eq":
                    if type(operand) == str:
                        return result.append(
                            has_key_and(
                                f" JSONExtractString(metadata,'{key}') = '{operand}'"
                            )
                        )
                    return result.append(
                        has_key_and(f" JSONExtractFloat(metadata,'{key}') = {operand}")
                    )
                else:
                    raise ValueError(
                        f"Expected one of $gt, $lt, $gte, $lte, $ne, $eq, got {operator}"
                    )
            elif type(value) == list:
                all_subresults = []
                for subwhere in value:
                    subresults = []
                    self._format_where(subwhere, subresults)
                    all_subresults.append(subresults[0])
                if key == "$or":
                    result.append(f"({' OR '.join(all_subresults)})")
                elif key == "$and":
                    result.append(f"({' AND '.join(all_subresults)})")
                else:
                    raise ValueError(f"Expected one of $or, $and, got {key}")

    def _format_where_document(self, where_document, results):
        operator = list(where_document.keys())[0]
        if operator == "$contains":
            results.append(f"position(document, '{where_document[operator]}') > 0")
        elif operator == "$and" or operator == "$or":
            all_subresults = []
            for subwhere in where_document[operator]:
                subresults = []
                self._format_where_document(subwhere, subresults)
                all_subresults.append(subresults[0])
            if operator == "$or":
                results.append(f"({' OR '.join(all_subresults)})")
            if operator == "$and":
                results.append(f"({' AND '.join(all_subresults)})")
        else:
            raise ValueError(f"Expected one of $contains, $and, $or, got {operator}")

    @override
    def get(
        self,
        where: Where = {},
        collection_name: Optional[str] = None,
        collection_uuid: Optional[UUID] = None,
        ids: Optional[IDs] = None,
        sort: Optional[str] = None,
        limit: Optional[int] = None,
        offset: Optional[int] = None,
        where_document: WhereDocument = {},
        columns: Optional[List[str]] = None,
    ) -> Sequence:
        if collection_name is None and collection_uuid is None:
            raise TypeError(
                "Arguments collection_name and collection_uuid cannot both be None"
            )

        if collection_name is not None:
            collection_uuid = self.get_collection_uuid_from_name(collection_name)

        where_str = self._create_where_clause(
            # collection_uuid must be defined at this point, cast it for typechecker
            cast(str, collection_uuid),
            ids=ids,
            where=where,
            where_document=where_document,
        )

        if sort is not None:
            where_str += f" ORDER BY {sort}"
        else:
            where_str += " ORDER BY collection_uuid"  # stable ordering

        if limit is not None or isinstance(limit, int):
            where_str += f" LIMIT {limit}"

        if offset is not None or isinstance(offset, int):
            where_str += f" OFFSET {offset}"

        val = self._get(where=where_str, columns=columns)

        return val

    @override
    def count(self, collection_id: UUID) -> int:
        where_string = f"WHERE collection_uuid = '{collection_id}'"
        return (
            self._get_conn()
            .query(f"SELECT COUNT() FROM embeddings {where_string}")
            .result_rows[0][0]
        )

    def _delete(self, where_str: Optional[str] = None) -> List:
        deleted_uuids = (
            self._get_conn()
            .query(f"""SELECT uuid FROM embeddings {where_str}""")
            .result_rows
        )
        self._get_conn().command(
            f"""
            DELETE FROM
                embeddings
        {where_str}
        """
        )
        return [res[0] for res in deleted_uuids] if len(deleted_uuids) > 0 else []

    @override
    def delete(
        self,
        where: Where = {},
        collection_uuid: Optional[UUID] = None,
        ids: Optional[IDs] = None,
        where_document: WhereDocument = {},
    ) -> List[str]:
        where_str = self._create_where_clause(
            # collection_uuid must be defined at this point, cast it for typechecker
            cast(str, collection_uuid),
            ids=ids,
            where=where,
            where_document=where_document,
        )

        deleted_uuids = self._delete(where_str)

        index = self._index(collection_uuid)
        index.delete_from_index(deleted_uuids)

        return deleted_uuids

    @override
    def get_by_ids(
        self, uuids: List[UUID], columns: Optional[List[str]] = None
    ) -> Sequence:
        columns = columns + ["uuid"] if columns else ["uuid"]
        select_columns = db_schema_to_keys() if columns is None else columns
        response = (
            self._get_conn()
            .query(
                f"""
        SELECT {",".join(select_columns)} FROM embeddings WHERE uuid IN ({[id.hex for id in uuids]})
        """
            )
            .result_rows
        )

        # sort db results by the order of the uuids
        response = sorted(response, key=lambda obj: uuids.index(obj[len(columns) - 1]))

        return response

    @override
    def get_nearest_neighbors(
        self,
        collection_uuid: UUID,
        where: Where = {},
        embeddings: Optional[Embeddings] = None,
        n_results: int = 10,
        where_document: WhereDocument = {},
    ) -> Tuple[List[List[UUID]], npt.NDArray]:
        # Either the collection name or the collection uuid must be provided
        if collection_uuid is None:
            raise TypeError("Argument collection_uuid cannot be None")

        if len(where) != 0 or len(where_document) != 0:
            results = self.get(
                collection_uuid=collection_uuid,
                where=where,
                where_document=where_document,
            )

            if len(results) > 0:
                ids = [x[1] for x in results]
            else:
                # No results found, return empty lists
                return [[] for _ in range(len(embeddings))], [
                    [] for _ in range(len(embeddings))
                ]
        else:
            ids = None

        index = self._index(collection_uuid)
        uuids, distances = index.get_nearest_neighbors(embeddings, n_results, ids)

        return uuids, distances

    @override
    def create_index(self, collection_uuid: UUID):
        """Create an index for a collection_uuid and optionally scoped to a dataset.
        Args:
            collection_uuid (str): The collection_uuid to create an index for
            dataset (str, optional): The dataset to scope the index to. Defaults to None.
        Returns:
            None
        """
        get = self.get(collection_uuid=collection_uuid)

        uuids = [x[1] for x in get]
        embeddings = [x[2] for x in get]

        index = self._index(collection_uuid)
        index.add(uuids, embeddings)

    @override
    def add_incremental(
        self, collection_uuid: UUID, ids: List[UUID], embeddings: Embeddings
    ) -> None:
        index = self._index(collection_uuid)
        index.add(ids, embeddings)

    def reset_indexes(self):
        delete_all_indexes(self._settings)
        self.index_cache = {}

    @override
    def reset(self):
        conn = self._get_conn()
        conn.command("DROP TABLE collections")
        conn.command("DROP TABLE embeddings")
        self._create_table_collections(conn)
        self._create_table_embeddings(conn)

        self.reset_indexes()

    @override
    def raw_sql(self, raw_sql):
        return self._get_conn().query(raw_sql).result_rows