Spaces:
Sleeping
Sleeping
File size: 7,257 Bytes
bee76d7 29d3362 bee76d7 29d3362 bee76d7 29d3362 bee76d7 29d3362 bee76d7 29d3362 bee76d7 29d3362 bee76d7 29d3362 bee76d7 6e4564b bee76d7 29d3362 6e4564b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import streamlit as st
import requests
import json
import os
from dotenv import load_dotenv
load_dotenv()
# AI model code
HF_API_KEY = os.getenv("HF_API_KEY")
API_URL_ED = "https://api-inference.huggingface.co/models/bhadresh-savani/bert-base-go-emotion"
API_URL_HS = "https://api-inference.huggingface.co/models/IMSyPP/hate_speech_en"
headers = {"Authorization": f"Bearer {HF_API_KEY}"}
# Set page title
st.title("GoEmotions Dashboard - Analyzing Emotions in Text")
# Add page description
description = "The GoEmotions Dashboard is a web-based user interface for analyzing emotions in text. The dashboard is powered by a pre-trained natural language processing model that can detect emotions in text input. Users can input any text and the dashboard will display the detected emotions in a set of gauges, with each gauge representing the intensity of a specific emotion category. The gauge colors are based on a predefined color map for each emotion category. This dashboard is useful for anyone who wants to understand the emotional content of a text, including content creators, marketers, and researchers."
st.markdown(description)
def query(payload):
response_ED = requests.request("POST", API_URL_ED, headers=headers, json=payload)
response_HS = requests.request("POST", API_URL_HS, headers=headers, json=payload)
return (json.loads(response_ED.content.decode("utf-8")),json.loads(response_HS.content.decode("utf-8")))
# Define color map for each emotion category
color_map = {
'admiration': ['#1f77b4', '#aec7e8', '#ff7f0e', '#d62728'],
'amusement': ['#ff7f0e', '#ffbb78', '#2ca02c', '#d62728'],
'anger': ['#d62728', '#ff9896', '#2ca02c', '#bcbd22'],
'annoyance': ['#d62728', '#ff9896', '#2ca02c', '#bcbd22'],
'approval': ['#1f77b4', '#aec7e8', '#ff7f0e', '#d62728'],
'caring': ['#1f77b4', '#aec7e8', '#ff7f0e', '#d62728'],
'confusion': ['#9467bd', '#c5b0d5', '#ff7f0e', '#d62728'],
'curiosity': ['#9467bd', '#c5b0d5', '#ff7f0e', '#d62728'],
'desire': ['#ff7f0e', '#ffbb78', '#2ca02c', '#d62728'],
'disappointment': ['#d62728', '#ff9896', '#2ca02c', '#bcbd22'],
'disapproval': ['#d62728', '#ff9896', '#2ca02c', '#bcbd22'],
'disgust': ['#d62728', '#ff9896', '#2ca02c', '#bcbd22'],
'embarrassment': ['#9467bd', '#c5b0d5', '#ff7f0e', '#d62728'],
'excitement': ['#ff7f0e', '#ffbb78', '#2ca02c', '#d62728'],
'fear': ['#d62728', '#ff9896', '#2ca02c', '#bcbd22'],
'gratitude': ['#1f77b4', '#aec7e8', '#ff7f0e', '#d62728'],
'grief': ['#d62728', '#ff9896', '#2ca02c', '#bcbd22'],
'joy': ['#ff7f0e', '#ffbb78', '#2ca02c', '#d62728'],
'love': ['#1f77b4', '#aec7e8', '#ff7f0e', '#d62728'],
'nervousness': ['#9467bd', '#c5b0d5', '#ff7f0e', '#d62728'],
'optimism': ['#1f77b4', '#aec7e8', '#ff7f0e', '#d62728'],
'pride': ['#1f77b4', '#aec7e8', '#ff7f0e', '#d62728'],
'realization': ['#9467bd', '#c5b0d5', '#ff7f0e', '#d62728'],
'relief': ['#1f77b4', '#aec7e8', '#ff7f0e', '#d62728'],
'remorse': ['#d62728', '#ff9896', '#2ca02c', '#bcbd22'],
'sadness': ['#d62728', '#ff9896', '#2ca02c', '#bcbd22'],
'surprise': ['#9467bd', '#c5b0d5', '#ff7f0e', '#d62728'],
'neutral': ['#1f77b4', '#aec7e8', '#ff7f0e', '#d62728']
}
# Labels for Hate Speech Classification
label_hs = {"LABEL_0": "Acceptable", "LABEL_1": "inappropriate", "LABEL_2": "Offensive", "LABEL_3": "Violent"}
# Define default options
default_options = [
"I'm so excited for my vacation next week!",
"I'm feeling so stressed about work.",
"I just received great news from my doctor!",
"I can't wait to see my best friend tomorrow.",
"I'm feeling so lonely and sad today."
"I'm so angry at my neighbor for being so rude.",
"You are so annoying!",
"You people from small towns are so dumb.",
"If you don't agree with me, you are a moron.",
"I hate you so much!",
"If you don't listen to me, I'll beat you up!",
]
# Create dropdown with default options
selected_option = st.selectbox("Select a default option or enter your own text:", default_options)
# Display text input with selected option as default value
text_input = st.text_input("Enter text to analyze emotions:", selected_option)
# Add submit button
if st.button("Submit"):
# Call API and get predicted probabilities for each emotion category and hate speech classification
payload = {"inputs": text_input, "use_cache": True, "wait_for_model": True}
response_ED, response_HS = query(payload)
predicted_probabilities_ED = response_ED[0]
predicted_probabilities_HS = response_HS[0]
# Sort the predicted probabilities in descending order
sorted_probs_ED = sorted(predicted_probabilities_ED, key=lambda x: x['score'], reverse=True)
# Get the top 4 emotion categories and their scores
top_emotions = sorted_probs_ED[:4]
top_scores = [e['score'] for e in top_emotions]
# Normalize the scores so that they add up to 100%
total = sum(top_scores)
normalized_scores = [score/total * 100 for score in top_scores]
# Create the gauge charts for the top 4 emotion categories using the normalized scores
fig = make_subplots(rows=2, cols=2, specs=[[{'type': 'indicator'}, {'type': 'indicator'}],
[{'type': 'indicator'}, {'type': 'indicator'}]],
vertical_spacing=0.4)
for i, emotion in enumerate(top_emotions):
category = emotion['label']
color = color_map[category]
value = normalized_scores[i]
row = i // 2 + 1
col = i % 2 + 1
fig.add_trace(go.Indicator(
domain={'x': [0, 1], 'y': [0, 1]},
value=value,
mode="gauge+number",
title={'text': category.capitalize()},
gauge={'axis': {'range': [None, 100]},
'bar': {'color': color[3]},
'bgcolor': 'white',
'borderwidth': 2,
'bordercolor': color[1],
'steps': [{'range': [0, 33], 'color': color[0]},
{'range': [33, 66], 'color': color[1]},
{'range': [66, 100], 'color': color[2]}],
'threshold': {'line': {'color': "black", 'width': 4},
'thickness': 0.5,
'value': 50}}), row=row, col=col)
# Update layout
fig.update_layout(height=400, margin=dict(t=50, b=5, l=0, r=0))
# Display gauge charts
st.text("")
st.text("")
st.text("")
st.header("Emotion Detection")
st.text("")
st.plotly_chart(fig, use_container_width=True)
# Display Hate Speech Classification
hate_detection = label_hs[predicted_probabilities_HS[0]['label']]
st.text("")
st.text("")
st.text("")
st.header("Hate Speech Analysis")
st.text("")
col1, col2 = st.columns(2)
col1.image(f"assets/{hate_detection}.jpg", width=200)
col2.text("")
col2.text("")
col2.text("")
col2.text("")
col2.subheader(f"The given text is {hate_detection}")
|