File size: 5,435 Bytes
a5df04e
 
 
6c880c2
 
 
 
 
a5df04e
 
a9f27ef
6c880c2
 
 
 
 
 
a5df04e
1671151
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c880c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1671151
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5df04e
 
 
 
 
 
 
 
1671151
a5df04e
 
6c880c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import gradio as gr
from transformers import pipeline
from PIL import Image
import os
from huggingface_hub import HfApi, upload_file
import io
import numpy as np
import uuid

# Initialize the pipeline with your model
pipe = pipeline("image-classification", model="SubterraAI/ofwat_material_classification")
HF_TOKEN = os.getenv('HF_TOKEN')
DATASET_NAME = "SubterraAI/ofwat_material_loop"
hf_api = HfApi()

# Directory where the flagged images will be saved
flagged_data_dir = "./flagged_data"

material_codes = {
    "AC": "Asphalt Concrete",
    "BL": "Block",
    "BR": "Brick",
    "CI": "Cast Iron",
    "CO": "Concrete",
    "CS": "Corrugated Steel",
    "DI": "Ductile Iron",
    "EP": "Epoxy",
    "GI": "Galvanized Iron",
    "MAR": "Masonry",
    "N": "Not specified, possibly a custom abbreviation",
    "OTH": "Other",
    "PE": "Polyethylene",
    "PF": "Plywood-Faced",
    "PP": "Polypropylene",
    "PVC": "Polyvinyl Chloride",
    "RC": "Reinforced Concrete",
    "ST": "Steel",
    "U": "Unspecified, possibly a custom abbreviation",
    "UPVC": "Unplasticized Polyvinyl Chloride",
    "VC": "Vinyl Coated",
    "XI": "Extra Impact",
    "XP": "Extruded Polystyrene",
    "Z": "Not specified, possibly a custom abbreviation"
}

material_full_names_list = [
    'Asphalt Concrete',
    'Block',
    'Brick',
    'Cast Iron',
    'Concrete',
    'Corrugated Steel',
    'Ductile Iron',
    'Epoxy',
    'Galvanized Iron',
    'Masonry',
    'Not specified, possibly a custom abbreviation',
    'Other',
    'Polyethylene',
    'Plywood-Faced',
    'Polypropylene',
    'Polyvinyl Chloride',
    'Reinforced Concrete',
    'Steel',
    'Unspecified, possibly a custom abbreviation',
    'Unplasticized Polyvinyl Chloride',
    'Vinyl Coated',
    'Extra Impact',
    'Extruded Polystyrene',
    'Not specified, possibly a custom abbreviation',
    'Vitrified Clay Lined'
]

def simple_flag(image, label):
    # Convert the input image to PIL format and save to a BytesIO object
    pil_image = Image.fromarray(image.astype(np.uint8))
    img_byte_arr = io.BytesIO()
    pil_image.save(img_byte_arr, format='PNG')
    
    # Generate a unique ID for the image
    unique_id = str(uuid.uuid4())
    img_filename = f"{unique_id}.png"

    # Save the image to a BytesIO object
    image_bytes = img_byte_arr.getvalue()

    # Upload the image to the correct label directory in the Hugging Face dataset
    label_dir = f"{label}/{img_filename}"
    upload_file(
        path_or_fileobj=io.BytesIO(image_bytes),
        path_in_repo=label_dir,
        repo_id=DATASET_NAME,
        repo_type="dataset",
        token=HF_TOKEN,
        commit_message=f"Add image with label {label}"
    )

    return "Thank you for your contribution to the open-source world! Your feedback helps us all move towards a clearer future"


def replace_label_with_full_name(res, defect_dict_key_code):
    new_res = {}
    for dic in res:
        # Splitting the label to handle possible suffix
        parts = dic["label"].split('_', 1)
        code = parts[0]
        suffix = '_' + parts[1] if len(parts) > 1 else ''

        # Replacing the code with its full name, if it exists in the dictionary
        full_name = defect_dict_key_code.get(code, code)

        # Constructing the new label with the suffix if it exists
        new_label = full_name + suffix
        new_res[new_label] = dic["score"]
    
    return new_res

def classify_image(image):
    # Convert the input image to PIL format
    PIL_image = Image.fromarray(image).convert('RGB')
    
    # Classify the image using the pipeline
    res = pipe(PIL_image)
    
    # Extract labels and scores
    return replace_label_with_full_name(res, material_codes)

# Create the Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# Material Classification with AI by Subterra")
    gr.Markdown("Upload an image to view a classification demonstration leveraging the dataset/library of images collected by WRc & United Utilities during The Water Services Regulation Authority (OFWAT) Innovation Challenge – Artificial Intelligence and Sewers. Not only can you see the initial classification, but you as the user can also inform us if the classification is correct. Your response will be used to retrain this model. The team at Subterra would like to thank all of those involved in collecting this dataset as we hope that other groups will use it to further advance technology solutions for the water industry.")

    with gr.Row():
        with gr.Column():
            img_input = gr.Image()
            submit_button = gr.Button("Classify")
            examples = gr.Examples(["examples/CS.jpg", "examples/GI.jpg", "examples/PP.jpg", "examples/RC.jpg"], label = "Explore Examples", inputs=img_input)
        with gr.Column():
            output_label = gr.Label()
            flagging_options = gr.Radio(material_full_names_list, label="Does this classification look off to you? Your sharp eyes can help correct it. Flag any inaccuracies and suggest the right label!")
            flag_button = gr.Button("Flag")
            flag_status = gr.Textbox(label = "Every flag you submit polishes our dataset. Thanks for being an active participant in our open-source journey.",visible=True)

    submit_button.click(classify_image, inputs=img_input, outputs=output_label)
    flag_button.click(simple_flag, inputs=[img_input, flagging_options], outputs=flag_status)

demo.launch()