# -*- coding: utf-8 -*- import os import numpy as np from tqdm import tqdm import tensorflow as tf import cv2 import argparse import typing import h5py # 解析命令行参数 def parse_opt(known=False): parser = argparse.ArgumentParser() parser.add_argument("--content_img_path", type=str, default="./images/1.jpg", help="原图路径") parser.add_argument("--style_img_path", type=str, default="./images/style.jpg", help="风格图片路径") parser.add_argument("--output_path", type=str, default="./output/1", help="生成图片保存路径") parser.add_argument("--epochs", type=int, default=20, help="总训练轮数") parser.add_argument("--step_per_epoch", type=int, default=100, help="每轮训练次数") parser.add_argument("--learning_rate", type=float, default=0.01, help="学习率") parser.add_argument("--content_loss_factor", type=float, default=1.0, help="内容损失总加权系数") parser.add_argument("--style_loss_factor", type=float, default=100.0, help="风格损失总加权系数") parser.add_argument("--img_size", type=int, default=0, help="图片尺寸,0代表不设置使用默认尺寸(450*300),输入1代表使用图片尺寸,其他输入代表使用自定义尺寸") parser.add_argument("--img_width", type=int, default=450, help="自定义图片宽度") parser.add_argument("--img_height", type=int, default=300, help="自定义图片高度") opt = parser.parse_known_args()[0] if known else parser.parse_args() return opt def load_images(image_path, width, height): """ 加载并处理图片,返回一个张量 """ x = tf.io.read_file(image_path) x = tf.image.decode_jpeg(x, channels=3) x = tf.image.resize(x, [height, width]) x = x / 255.0 x = normalization(x) x = tf.reshape(x, [1, height, width, 3]) return x def load_images_from_list(image_array, width, height): """ 从numpy数组加载并处理图片,返回一个张量 """ x = tf.convert_to_tensor(image_array, dtype=tf.float32) x = tf.image.resize(x, [height, width]) x = x / 255.0 x = normalization(x) x = tf.reshape(x, [1, height, width, 3]) return x def save_image(image, filename): """ 保存图片 """ x = tf.reshape(image, image.shape[1:]) x = x * image_std + image_mean x = x * 255.0 x = tf.cast(x, tf.int32) x = tf.clip_by_value(x, 0, 255) x = tf.cast(x, tf.uint8) x = tf.image.encode_jpeg(x) tf.io.write_file(filename, x) def save_image_for_gradio(image): """ 将图片保存为numpy数组 """ x = tf.reshape(image, image.shape[1:]) x = x * image_std + image_mean x = x * 255.0 x = tf.cast(x, tf.int32) x = tf.clip_by_value(x, 0, 255) x = tf.cast(x, tf.uint8) numpy_array = x.numpy() # 将TensorFlow张量转换为numpy数组 return numpy_array def get_vgg19_model(layers): """ 创建并初始化vgg19模型 """ vgg = tf.keras.applications.VGG19(include_top=False, weights="imagenet") outputs = [vgg.get_layer(layer).output for layer in layers] model = tf.keras.Model(vgg.input, outputs) model.trainable = False return model class NeuralStyleTransferModel(tf.keras.Model): def __init__(self, content_layers: typing.Dict[str, float], style_layers: typing.Dict[str, float]): super(NeuralStyleTransferModel, self).__init__() self.content_layers = content_layers self.style_layers = style_layers layers = list(self.content_layers.keys()) + list(self.style_layers.keys()) self.outputs_index_map = dict(zip(layers, range(len(layers)))) self.vgg = get_vgg19_model(layers) def call(self, inputs, training=None, mask=None): outputs = self.vgg(inputs) content_outputs = [] for layer, factor in self.content_layers.items(): content_outputs.append((outputs[self.outputs_index_map[layer]][0], factor)) style_outputs = [] for layer, factor in self.style_layers.items(): style_outputs.append((outputs[self.outputs_index_map[layer]][0], factor)) return {"content": content_outputs, "style": style_outputs} def normalization(x): """ 对输入图片进行归一化处理,返回归一化后的值 """ return (x - image_mean) / image_std def _compute_content_loss(noise_features, target_features): """ 计算指定层上两个特征之间的内容损失 """ content_loss = tf.reduce_sum(tf.square(noise_features - target_features)) x = 2.0 * M * N content_loss = content_loss / x return content_loss def compute_content_loss(noise_content_features, target_content_features): """ 计算并返回当前图片的内容损失 """ content_losses = [] for (noise_feature, factor), (target_feature, _) in zip(noise_content_features, target_content_features): layer_content_loss = _compute_content_loss(noise_feature, target_feature) content_losses.append(layer_content_loss * factor) return tf.reduce_sum(content_losses) def gram_matrix(feature): """ 计算给定特征的格拉姆矩阵 """ x = tf.transpose(feature, perm=[2, 0, 1]) x = tf.reshape(x, (x.shape[0], -1)) return x @ tf.transpose(x) def _compute_style_loss(noise_feature, target_feature): """ 计算指定层上两个特征之间的风格损失 """ noise_gram_matrix = gram_matrix(noise_feature) style_gram_matrix = gram_matrix(target_feature) style_loss = tf.reduce_sum(tf.square(noise_gram_matrix - style_gram_matrix)) x = 4.0 * (M**2) * (N**2) return style_loss / x def compute_style_loss(noise_style_features, target_style_features): """ 计算并返回图片的风格损失 """ style_losses = [] for (noise_feature, factor), (target_feature, _) in zip(noise_style_features, target_style_features): layer_style_loss = _compute_style_loss(noise_feature, target_feature) style_losses.append(layer_style_loss * factor) return tf.reduce_sum(style_losses) def total_loss(noise_features, target_content_features, target_style_features): """ 计算总损失 """ content_loss = compute_content_loss(noise_features["content"], target_content_features) style_loss = compute_style_loss(noise_features["style"], target_style_features) return content_loss * CONTENT_LOSS_FACTOR + style_loss * STYLE_LOSS_FACTOR @tf.function def train_one_step(model, noise_image, optimizer, target_content_features, target_style_features): """ 一次迭代过程 """ with tf.GradientTape() as tape: noise_outputs = model(noise_image) loss = total_loss(noise_outputs, target_content_features, target_style_features) grad = tape.gradient(loss, noise_image) optimizer.apply_gradients([(grad, noise_image)]) return loss def main(content_img, style_img, epochs, step_per_epoch, learning_rate, content_loss_factor, style_loss_factor, img_size, img_width, img_height): global CONTENT_LOSS_FACTOR, STYLE_LOSS_FACTOR, CONTENT_IMAGE_PATH, STYLE_IMAGE_PATH, OUTPUT_DIR, EPOCHS, LEARNING_RATE, STEPS_PER_EPOCH, M, N, image_mean, image_std, IMG_WIDTH, IMG_HEIGHT # with tf.device('/cuda:0'): CONTENT_LOSS_FACTOR = content_loss_factor STYLE_LOSS_FACTOR = style_loss_factor CONTENT_IMAGE_PATH = content_img STYLE_IMAGE_PATH = style_img EPOCHS = epochs LEARNING_RATE = learning_rate STEPS_PER_EPOCH = step_per_epoch # 内容特征层及损失加权系数 CONTENT_LAYERS = {"block4_conv2": 0.5, "block5_conv2": 0.5} # 风格特征层及损失加权系数 STYLE_LAYERS = { "block1_conv1": 0.2, "block2_conv1": 0.2, "block3_conv1": 0.2, "block4_conv1": 0.2, "block5_conv1": 0.2, } if img_size == "default size": IMG_WIDTH = 450 IMG_HEIGHT = 300 else: IMG_WIDTH = img_width IMG_HEIGHT = img_height print("IMG_WIDTH:", IMG_WIDTH) print("IMG_HEIGHT:", IMG_HEIGHT) # 我们准备使用经典网络在imagenet数据集上的预训练权重,所以归一化时也要使用imagenet的平均值和标准差 image_mean = tf.constant([0.485, 0.456, 0.406]) image_std = tf.constant([0.299, 0.224, 0.225]) model = NeuralStyleTransferModel(CONTENT_LAYERS, STYLE_LAYERS) content_image = load_images_from_list(CONTENT_IMAGE_PATH, IMG_WIDTH, IMG_HEIGHT) style_image = load_images_from_list(STYLE_IMAGE_PATH, IMG_WIDTH, IMG_HEIGHT) target_content_features = model(content_image)["content"] target_style_features = model(style_image)["style"] M = IMG_WIDTH * IMG_HEIGHT N = 3 optimizer = tf.keras.optimizers.Adam(LEARNING_RATE) noise_image = tf.Variable((content_image[0] + np.random.uniform(-0.2, 0.2, (1, IMG_HEIGHT, IMG_WIDTH, 3))) / 2) for epoch in range(EPOCHS): with tqdm(total=STEPS_PER_EPOCH, desc="Epoch {}/{}".format(epoch + 1, EPOCHS)) as pbar: for step in range(STEPS_PER_EPOCH): _loss = train_one_step(model, noise_image, optimizer, target_content_features, target_style_features) pbar.set_postfix({"loss": "%.4f" % float(_loss)}) pbar.update(1) return save_image_for_gradio(noise_image) if __name__ == "__main__": print(tf.config.list_physical_devices('GPU')) opt = parse_opt() main(opt.content_img_path, opt.style_img_path, opt.epochs, opt.step_per_epoch, opt.learning_rate, opt.content_loss_factor, opt.style_loss_factor, opt.img_size, opt.img_width, opt.img_height)