import gradio as gr from train import main import spaces import tensorflow as tf # Function to calculate the aspect ratio def calculate_aspect_ratio(width, height): return width / height # Function to update image dimensions based on aspect ratio def update_dimensions(value, aspect_ratio, dim): if dim == "width": new_height = int(value / aspect_ratio) return gr.update(value=value, visible=True), gr.update(value=new_height, visible=True) elif dim == "height": new_width = int(value * aspect_ratio) return gr.update(value=new_width, visible=True), gr.update(value=value, visible=True) # Function to handle image size selection def handle_image_size_selection(img_size, content_img): if img_size == "custom size": height, width, _ = content_img.shape aspect_ratio = calculate_aspect_ratio(width, height) return (gr.update(value=width, visible=True), gr.update(value=height, visible=True), gr.update(visible=True), gr.update(visible=True), aspect_ratio) else: return (gr.update(value=450, visible=False), gr.update(value=300, visible=False), gr.update(visible=False), gr.update(visible=False), None) # Define the function to process images # @spaces.GPU def process_images(content_img, style_img, epochs, steps_per_epoch, learning_rate, content_loss_factor, style_loss_factor, img_size, img_width, img_height): print("Start processing") print(tf.config.list_physical_devices('GPU')) # with tf.device("/cuda:0"): output_img = main(content_img, style_img, epochs, steps_per_epoch, learning_rate, content_loss_factor, style_loss_factor, img_size, img_width, img_height) return output_img # @spaces.GPU def create_app(): with gr.Blocks() as demo: aspect_ratio = gr.State(None) with gr.Row(): with gr.Column(scale=1): content_img = gr.Image(type="numpy", label="Content Image") style_img = gr.Image(type="numpy", label="Style Image") process_button = gr.Button("Process") with gr.Accordion("Parameters", open=False): epochs = gr.Slider(minimum=1, maximum=100, step=1, label="Epochs", value=20) steps_per_epoch = gr.Slider(minimum=1, maximum=1000, step=1, label="Steps per Epoch", value=100) learning_rate = gr.Slider(minimum=0.0001, maximum=0.1, step=0.0001, label="Learning Rate", value=0.01) content_loss_factor = gr.Slider(minimum=0.1, maximum=10, step=0.1, label="Content Loss Factor", value=1.0) style_loss_factor = gr.Slider(minimum=0.1, maximum=1000, step=0.1, label="Style Loss Factor", value=100.0) img_size = gr.Dropdown(choices=["default size", "custom size"], label="Image Size", value="default size") img_width = gr.Number(label="Image Width", value=450, visible=False) img_height = gr.Number(label="Image Height", value=300, visible=False) with gr.Column(scale=1): output_img = gr.Image(label="Output Image") img_size.change( fn=handle_image_size_selection, inputs=[img_size, content_img], outputs=[img_width, img_height, img_width, img_height, aspect_ratio] ) img_width.change( fn=lambda w, ar: update_dimensions(w, ar, "width"), inputs=[img_width, aspect_ratio], outputs=[img_width, img_height] ) img_height.change( fn=lambda h, ar: update_dimensions(h, ar, "height"), inputs=[img_height, aspect_ratio], outputs=[img_width, img_height] ) process_button.click( process_images, inputs=[content_img, style_img, epochs, steps_per_epoch, learning_rate, content_loss_factor, style_loss_factor, img_size, img_width, img_height], outputs=[output_img] ) demo.launch() if __name__ == "__main__": create_app()