StevenChen16's picture
Update train.py
1adde95 verified
# -*- coding: utf-8 -*-
import os
import numpy as np
from tqdm import tqdm
import tensorflow as tf
import cv2
import argparse
import typing
import h5py
# 解析命令行参数
def parse_opt(known=False):
parser = argparse.ArgumentParser()
parser.add_argument("--content_img_path", type=str, default="./images/1.jpg", help="原图路径")
parser.add_argument("--style_img_path", type=str, default="./images/style.jpg", help="风格图片路径")
parser.add_argument("--output_path", type=str, default="./output/1", help="生成图片保存路径")
parser.add_argument("--epochs", type=int, default=20, help="总训练轮数")
parser.add_argument("--step_per_epoch", type=int, default=100, help="每轮训练次数")
parser.add_argument("--learning_rate", type=float, default=0.01, help="学习率")
parser.add_argument("--content_loss_factor", type=float, default=1.0, help="内容损失总加权系数")
parser.add_argument("--style_loss_factor", type=float, default=100.0, help="风格损失总加权系数")
parser.add_argument("--img_size", type=int, default=0, help="图片尺寸,0代表不设置使用默认尺寸(450*300),输入1代表使用图片尺寸,其他输入代表使用自定义尺寸")
parser.add_argument("--img_width", type=int, default=450, help="自定义图片宽度")
parser.add_argument("--img_height", type=int, default=300, help="自定义图片高度")
opt = parser.parse_known_args()[0] if known else parser.parse_args()
return opt
def load_images(image_path, width, height):
"""
加载并处理图片,返回一个张量
"""
x = tf.io.read_file(image_path)
x = tf.image.decode_jpeg(x, channels=3)
x = tf.image.resize(x, [height, width])
x = x / 255.0
x = normalization(x)
x = tf.reshape(x, [1, height, width, 3])
return x
def load_images_from_list(image_array, width, height):
"""
从numpy数组加载并处理图片,返回一个张量
"""
x = tf.convert_to_tensor(image_array, dtype=tf.float32)
x = tf.image.resize(x, [height, width])
x = x / 255.0
x = normalization(x)
x = tf.reshape(x, [1, height, width, 3])
return x
def save_image(image, filename):
"""
保存图片
"""
x = tf.reshape(image, image.shape[1:])
x = x * image_std + image_mean
x = x * 255.0
x = tf.cast(x, tf.int32)
x = tf.clip_by_value(x, 0, 255)
x = tf.cast(x, tf.uint8)
x = tf.image.encode_jpeg(x)
tf.io.write_file(filename, x)
def save_image_for_gradio(image):
"""
将图片保存为numpy数组
"""
x = tf.reshape(image, image.shape[1:])
x = x * image_std + image_mean
x = x * 255.0
x = tf.cast(x, tf.int32)
x = tf.clip_by_value(x, 0, 255)
x = tf.cast(x, tf.uint8)
numpy_array = x.numpy() # 将TensorFlow张量转换为numpy数组
return numpy_array
def get_vgg19_model(layers):
"""
创建并初始化vgg19模型
"""
vgg = tf.keras.applications.VGG19(include_top=False, weights="imagenet")
outputs = [vgg.get_layer(layer).output for layer in layers]
model = tf.keras.Model(vgg.input, outputs)
model.trainable = False
return model
class NeuralStyleTransferModel(tf.keras.Model):
def __init__(self, content_layers: typing.Dict[str, float], style_layers: typing.Dict[str, float]):
super(NeuralStyleTransferModel, self).__init__()
self.content_layers = content_layers
self.style_layers = style_layers
layers = list(self.content_layers.keys()) + list(self.style_layers.keys())
self.outputs_index_map = dict(zip(layers, range(len(layers))))
self.vgg = get_vgg19_model(layers)
def call(self, inputs, training=None, mask=None):
outputs = self.vgg(inputs)
content_outputs = []
for layer, factor in self.content_layers.items():
content_outputs.append((outputs[self.outputs_index_map[layer]][0], factor))
style_outputs = []
for layer, factor in self.style_layers.items():
style_outputs.append((outputs[self.outputs_index_map[layer]][0], factor))
return {"content": content_outputs, "style": style_outputs}
def normalization(x):
"""
对输入图片进行归一化处理,返回归一化后的值
"""
return (x - image_mean) / image_std
def _compute_content_loss(noise_features, target_features):
"""
计算指定层上两个特征之间的内容损失
"""
content_loss = tf.reduce_sum(tf.square(noise_features - target_features))
x = 2.0 * M * N
content_loss = content_loss / x
return content_loss
def compute_content_loss(noise_content_features, target_content_features):
"""
计算并返回当前图片的内容损失
"""
content_losses = []
for (noise_feature, factor), (target_feature, _) in zip(noise_content_features, target_content_features):
layer_content_loss = _compute_content_loss(noise_feature, target_feature)
content_losses.append(layer_content_loss * factor)
return tf.reduce_sum(content_losses)
def gram_matrix(feature):
"""
计算给定特征的格拉姆矩阵
"""
x = tf.transpose(feature, perm=[2, 0, 1])
x = tf.reshape(x, (x.shape[0], -1))
return x @ tf.transpose(x)
def _compute_style_loss(noise_feature, target_feature):
"""
计算指定层上两个特征之间的风格损失
"""
noise_gram_matrix = gram_matrix(noise_feature)
style_gram_matrix = gram_matrix(target_feature)
style_loss = tf.reduce_sum(tf.square(noise_gram_matrix - style_gram_matrix))
x = 4.0 * (M**2) * (N**2)
return style_loss / x
def compute_style_loss(noise_style_features, target_style_features):
"""
计算并返回图片的风格损失
"""
style_losses = []
for (noise_feature, factor), (target_feature, _) in zip(noise_style_features, target_style_features):
layer_style_loss = _compute_style_loss(noise_feature, target_feature)
style_losses.append(layer_style_loss * factor)
return tf.reduce_sum(style_losses)
def total_loss(noise_features, target_content_features, target_style_features):
"""
计算总损失
"""
content_loss = compute_content_loss(noise_features["content"], target_content_features)
style_loss = compute_style_loss(noise_features["style"], target_style_features)
return content_loss * CONTENT_LOSS_FACTOR + style_loss * STYLE_LOSS_FACTOR
@tf.function
def train_one_step(model, noise_image, optimizer, target_content_features, target_style_features):
"""
一次迭代过程
"""
with tf.GradientTape() as tape:
noise_outputs = model(noise_image)
loss = total_loss(noise_outputs, target_content_features, target_style_features)
grad = tape.gradient(loss, noise_image)
optimizer.apply_gradients([(grad, noise_image)])
return loss
def main(content_img, style_img, epochs, step_per_epoch, learning_rate, content_loss_factor, style_loss_factor, img_size, img_width, img_height):
global CONTENT_LOSS_FACTOR, STYLE_LOSS_FACTOR, CONTENT_IMAGE_PATH, STYLE_IMAGE_PATH, OUTPUT_DIR, EPOCHS, LEARNING_RATE, STEPS_PER_EPOCH, M, N, image_mean, image_std, IMG_WIDTH, IMG_HEIGHT
# with tf.device('/cuda:0'):
CONTENT_LOSS_FACTOR = content_loss_factor
STYLE_LOSS_FACTOR = style_loss_factor
CONTENT_IMAGE_PATH = content_img
STYLE_IMAGE_PATH = style_img
EPOCHS = epochs
LEARNING_RATE = learning_rate
STEPS_PER_EPOCH = step_per_epoch
# 内容特征层及损失加权系数
CONTENT_LAYERS = {"block4_conv2": 0.5, "block5_conv2": 0.5}
# 风格特征层及损失加权系数
STYLE_LAYERS = {
"block1_conv1": 0.2,
"block2_conv1": 0.2,
"block3_conv1": 0.2,
"block4_conv1": 0.2,
"block5_conv1": 0.2,
}
if img_size == "default size":
IMG_WIDTH = 450
IMG_HEIGHT = 300
else:
IMG_WIDTH = img_width
IMG_HEIGHT = img_height
print("IMG_WIDTH:", IMG_WIDTH)
print("IMG_HEIGHT:", IMG_HEIGHT)
# 我们准备使用经典网络在imagenet数据集上的预训练权重,所以归一化时也要使用imagenet的平均值和标准差
image_mean = tf.constant([0.485, 0.456, 0.406])
image_std = tf.constant([0.299, 0.224, 0.225])
model = NeuralStyleTransferModel(CONTENT_LAYERS, STYLE_LAYERS)
content_image = load_images_from_list(CONTENT_IMAGE_PATH, IMG_WIDTH, IMG_HEIGHT)
style_image = load_images_from_list(STYLE_IMAGE_PATH, IMG_WIDTH, IMG_HEIGHT)
target_content_features = model(content_image)["content"]
target_style_features = model(style_image)["style"]
M = IMG_WIDTH * IMG_HEIGHT
N = 3
optimizer = tf.keras.optimizers.Adam(LEARNING_RATE)
noise_image = tf.Variable((content_image[0] + np.random.uniform(-0.2, 0.2, (1, IMG_HEIGHT, IMG_WIDTH, 3))) / 2)
for epoch in range(EPOCHS):
with tqdm(total=STEPS_PER_EPOCH, desc="Epoch {}/{}".format(epoch + 1, EPOCHS)) as pbar:
for step in range(STEPS_PER_EPOCH):
_loss = train_one_step(model, noise_image, optimizer, target_content_features, target_style_features)
pbar.set_postfix({"loss": "%.4f" % float(_loss)})
pbar.update(1)
return save_image_for_gradio(noise_image)
if __name__ == "__main__":
print(tf.config.list_physical_devices('GPU'))
opt = parse_opt()
main(opt.content_img_path, opt.style_img_path, opt.epochs, opt.step_per_epoch, opt.learning_rate, opt.content_loss_factor, opt.style_loss_factor, opt.img_size, opt.img_width, opt.img_height)