StevenChen16's picture
Update app.py
a5863d0 verified
import gradio as gr
from train import main
import spaces
import tensorflow as tf
# Function to calculate the aspect ratio
def calculate_aspect_ratio(width, height):
return width / height
# Function to update image dimensions based on aspect ratio
def update_dimensions(value, aspect_ratio, dim):
if dim == "width":
new_height = int(value / aspect_ratio)
return gr.update(value=value, visible=True), gr.update(value=new_height, visible=True)
elif dim == "height":
new_width = int(value * aspect_ratio)
return gr.update(value=new_width, visible=True), gr.update(value=value, visible=True)
# Function to handle image size selection
def handle_image_size_selection(img_size, content_img):
if img_size == "custom size":
height, width, _ = content_img.shape
aspect_ratio = calculate_aspect_ratio(width, height)
return (gr.update(value=width, visible=True),
gr.update(value=height, visible=True),
gr.update(visible=True),
gr.update(visible=True),
aspect_ratio)
else:
return (gr.update(value=450, visible=False),
gr.update(value=300, visible=False),
gr.update(visible=False),
gr.update(visible=False),
None)
# Define the function to process images
# @spaces.GPU
def process_images(content_img, style_img, epochs, steps_per_epoch, learning_rate, content_loss_factor, style_loss_factor, img_size, img_width, img_height):
print("Start processing")
print(tf.config.list_physical_devices('GPU'))
# with tf.device("/cuda:0"):
output_img = main(content_img, style_img, epochs, steps_per_epoch, learning_rate, content_loss_factor, style_loss_factor, img_size, img_width, img_height)
return output_img
# @spaces.GPU
def create_app():
with gr.Blocks() as demo:
aspect_ratio = gr.State(None)
with gr.Row():
with gr.Column(scale=1):
content_img = gr.Image(type="numpy", label="Content Image")
style_img = gr.Image(type="numpy", label="Style Image")
process_button = gr.Button("Process")
with gr.Accordion("Parameters", open=False):
epochs = gr.Slider(minimum=1, maximum=100, step=1, label="Epochs", value=20)
steps_per_epoch = gr.Slider(minimum=1, maximum=1000, step=1, label="Steps per Epoch", value=100)
learning_rate = gr.Slider(minimum=0.0001, maximum=0.1, step=0.0001, label="Learning Rate", value=0.01)
content_loss_factor = gr.Slider(minimum=0.1, maximum=10, step=0.1, label="Content Loss Factor", value=1.0)
style_loss_factor = gr.Slider(minimum=0.1, maximum=1000, step=0.1, label="Style Loss Factor", value=100.0)
img_size = gr.Dropdown(choices=["default size", "custom size"], label="Image Size", value="default size")
img_width = gr.Number(label="Image Width", value=450, visible=False)
img_height = gr.Number(label="Image Height", value=300, visible=False)
with gr.Column(scale=1):
output_img = gr.Image(label="Output Image")
img_size.change(
fn=handle_image_size_selection,
inputs=[img_size, content_img],
outputs=[img_width, img_height, img_width, img_height, aspect_ratio]
)
img_width.change(
fn=lambda w, ar: update_dimensions(w, ar, "width"),
inputs=[img_width, aspect_ratio],
outputs=[img_width, img_height]
)
img_height.change(
fn=lambda h, ar: update_dimensions(h, ar, "height"),
inputs=[img_height, aspect_ratio],
outputs=[img_width, img_height]
)
process_button.click(
process_images,
inputs=[content_img, style_img, epochs, steps_per_epoch, learning_rate, content_loss_factor, style_loss_factor, img_size, img_width, img_height],
outputs=[output_img]
)
demo.launch()
if __name__ == "__main__":
create_app()