Spaces:
Sleeping
Sleeping
import streamlit as st | |
from keras.layers import LSTM, Dropout, Bidirectional, Dense,Embedding,Flatten,Maximum,Activation,Conv2D,LayerNormalization,add\ | |
, BatchNormalization, SpatialDropout1D ,Input,Layer,Multiply,Reshape ,Add, GRU,Concatenate,Conv1D,TimeDistributed,ZeroPadding1D,concatenate,MaxPool1D,GlobalMaxPooling1D | |
import keras.backend as K | |
from keras import initializers, regularizers, constraints, activations | |
from keras.initializers import Constant | |
from keras import Model | |
class TimestepDropout(Dropout): | |
def __init__(self, rate, **kwargs): | |
super(TimestepDropout, self).__init__(rate, **kwargs) | |
def _get_noise_shape(self, inputs): | |
input_shape = K.shape(inputs) | |
noise_shape = (input_shape[0], input_shape[1], 1) | |
return noise_shape | |
def model_(n_gram = 21): | |
input1 = Input(shape=(21,),dtype='float32',name = 'char_input') | |
input2 = Input(shape=(21,),dtype='float32',name = 'type_input') | |
a = Embedding(180, 32,input_length=21)(input1) | |
a = SpatialDropout1D(0.1)(a) | |
a = TimestepDropout(0.05)(a) | |
char_input = BatchNormalization()(a) | |
a_concat = [] | |
filters = [[1,200],[2,200],[3,200],[4,200],[5,200],[6,200],[7,200],[8,200],[9,150],[10,150],[11,150],[12,100]] | |
for (window_size, filters_size) in filters: | |
convs = Conv1D(filters=filters_size, kernel_size=window_size, strides=1)(char_input) | |
convs = Activation('elu')(convs) | |
convs = TimeDistributed(Dense(5, input_shape=(21, filters_size)))(convs) | |
convs = ZeroPadding1D(padding=(0, window_size-1))(convs) | |
a_concat.append(convs) | |
token_max = Maximum()(a_concat) | |
lstm_char = Bidirectional(LSTM(100 ,return_sequences=True))(char_input) | |
b = Embedding(12, 12, input_length=21)(input2) | |
b = SpatialDropout1D(0.1)(b) | |
type_inputs = TimestepDropout(0.05)(b) | |
x = Concatenate()([lstm_char, type_inputs, char_input, token_max]) | |
x = BatchNormalization()(x) | |
x = Flatten()(x) | |
x = Dense(200, activation='elu')(x) | |
x = Dropout(0.2)(x) | |
out = Dense(1, activation='sigmoid',dtype = 'float32')(x) | |
model = Model(inputs=[input1, input2], outputs=out) | |
return model | |
def create_feature_array(text, n_pad=21): | |
n = len(text) | |
n_pad_2 = int((n_pad - 1)/2) | |
text_pad = [' '] * n_pad_2 + [t for t in text] + [' '] * n_pad_2 | |
x_char, x_type = [], [] | |
for i in range(n_pad_2, n_pad_2 + n): | |
char_list = text_pad[i + 1: i + n_pad_2 + 1] + \ | |
list(reversed(text_pad[i - n_pad_2: i])) + \ | |
[text_pad[i]] | |
char_map = [CHARS_MAP.get(c, 179) for c in char_list] | |
char_type = [CHAR_TYPES_MAP.get(CHAR_TYPE_FLATTEN.get(c, 'o'), 4) | |
for c in char_list] | |
x_char.append(char_map) | |
x_type.append(char_type) | |
x_char = np.array(x_char).astype(float) | |
x_type = np.array(x_type).astype(float) | |
return x_char, x_type | |
def tokenize(text): | |
n_pad = 21 | |
if not text: | |
return [''] | |
if isinstance(text, str) and sys.version_info.major == 2: | |
text = text.decode('utf-8') | |
x_char, x_type = create_feature_array(text, n_pad=n_pad) | |
word_end = [] | |
y_predict = model.predict([x_char, x_type], batch_size = 512) | |
y_predict = (y_predict.ravel() > 0.4).astype(int) | |
word_end = y_predict[1:].tolist() + [1] | |
tokens = [] | |
word = '' | |
for char, w_e in zip(text, word_end): | |
word += char | |
if w_e: | |
tokens.append(word) | |
word = '' | |
return tokens | |
model = model_() | |
model.load_weights("cutto_tf2.h5") | |
text = st.text_area("Enter original text!") | |
words = tokenize(text) | |
st.write('|'.join(words)) |