import numpy as np from fastapi import FastAPI, Body from fastapi.exceptions import HTTPException from PIL import Image import gradio as gr from modules.api.models import * from modules.api import api from scripts import external_code, global_state from scripts.processor import preprocessor_filters from scripts.logging import logger def encode_to_base64(image): if type(image) is str: return image elif type(image) is Image.Image: return api.encode_pil_to_base64(image) elif type(image) is np.ndarray: return encode_np_to_base64(image) else: return "" def encode_np_to_base64(image): pil = Image.fromarray(image) return api.encode_pil_to_base64(pil) def controlnet_api(_: gr.Blocks, app: FastAPI): @app.get("/controlnet/version") async def version(): return {"version": external_code.get_api_version()} @app.get("/controlnet/model_list") async def model_list(update: bool = True): up_to_date_model_list = external_code.get_models(update=update) logger.debug(up_to_date_model_list) return {"model_list": up_to_date_model_list} @app.get("/controlnet/module_list") async def module_list(alias_names: bool = False): _module_list = external_code.get_modules(alias_names) logger.debug(_module_list) return { "module_list": _module_list, "module_detail": external_code.get_modules_detail(alias_names), } @app.get("/controlnet/control_types") async def control_types(): def format_control_type( filtered_preprocessor_list, filtered_model_list, default_option, default_model, ): return { "module_list": filtered_preprocessor_list, "model_list": filtered_model_list, "default_option": default_option, "default_model": default_model, } return { "control_types": { control_type: format_control_type( *global_state.select_control_type(control_type) ) for control_type in preprocessor_filters.keys() } } @app.get("/controlnet/settings") async def settings(): max_models_num = external_code.get_max_models_num() return {"control_net_unit_count": max_models_num} cached_cn_preprocessors = global_state.cache_preprocessors( global_state.cn_preprocessor_modules ) @app.post("/controlnet/detect") async def detect( controlnet_module: str = Body("none", title="Controlnet Module"), controlnet_input_images: List[str] = Body([], title="Controlnet Input Images"), controlnet_processor_res: int = Body( 512, title="Controlnet Processor Resolution" ), controlnet_threshold_a: float = Body(64, title="Controlnet Threshold a"), controlnet_threshold_b: float = Body(64, title="Controlnet Threshold b"), ): controlnet_module = global_state.reverse_preprocessor_aliases.get( controlnet_module, controlnet_module ) if controlnet_module not in cached_cn_preprocessors: raise HTTPException(status_code=422, detail="Module not available") if len(controlnet_input_images) == 0: raise HTTPException(status_code=422, detail="No image selected") logger.info( f"Detecting {str(len(controlnet_input_images))} images with the {controlnet_module} module." ) results = [] poses = [] processor_module = cached_cn_preprocessors[controlnet_module] for input_image in controlnet_input_images: img = external_code.to_base64_nparray(input_image) class JsonAcceptor: def __init__(self) -> None: self.value = None def accept(self, json_dict: dict) -> None: self.value = json_dict json_acceptor = JsonAcceptor() results.append( processor_module( img, res=controlnet_processor_res, thr_a=controlnet_threshold_a, thr_b=controlnet_threshold_b, json_pose_callback=json_acceptor.accept, )[0] ) if "openpose" in controlnet_module: assert json_acceptor.value is not None poses.append(json_acceptor.value) global_state.cn_preprocessor_unloadable.get(controlnet_module, lambda: None)() results64 = list(map(encode_to_base64, results)) res = {"images": results64, "info": "Success"} if poses: res["poses"] = poses return res try: import modules.script_callbacks as script_callbacks script_callbacks.on_app_started(controlnet_api) except: pass