import os import torch import numpy as np from einops import rearrange from annotator.pidinet.model import pidinet from annotator.util import safe_step from modules import devices from annotator.annotator_path import models_path from scripts.utils import load_state_dict netNetwork = None remote_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/table5_pidinet.pth" modeldir = os.path.join(models_path, "pidinet") old_modeldir = os.path.dirname(os.path.realpath(__file__)) def apply_pidinet(input_image, is_safe=False, apply_fliter=False): global netNetwork if netNetwork is None: modelpath = os.path.join(modeldir, "table5_pidinet.pth") old_modelpath = os.path.join(old_modeldir, "table5_pidinet.pth") if os.path.exists(old_modelpath): modelpath = old_modelpath elif not os.path.exists(modelpath): from basicsr.utils.download_util import load_file_from_url load_file_from_url(remote_model_path, model_dir=modeldir) netNetwork = pidinet() ckp = load_state_dict(modelpath) netNetwork.load_state_dict({k.replace('module.',''):v for k, v in ckp.items()}) netNetwork = netNetwork.to(devices.get_device_for("controlnet")) netNetwork.eval() assert input_image.ndim == 3 input_image = input_image[:, :, ::-1].copy() with torch.no_grad(): image_pidi = torch.from_numpy(input_image).float().to(devices.get_device_for("controlnet")) image_pidi = image_pidi / 255.0 image_pidi = rearrange(image_pidi, 'h w c -> 1 c h w') edge = netNetwork(image_pidi)[-1] edge = edge.cpu().numpy() if apply_fliter: edge = edge > 0.5 if is_safe: edge = safe_step(edge) edge = (edge * 255.0).clip(0, 255).astype(np.uint8) return edge[0][0] def unload_pid_model(): global netNetwork if netNetwork is not None: netNetwork.cpu()