import os.path as osp import annotator.mmpkg.mmcv as mmcv import numpy as np from ..builder import PIPELINES @PIPELINES.register_module() class LoadImageFromFile(object): """Load an image from file. Required keys are "img_prefix" and "img_info" (a dict that must contain the key "filename"). Added or updated keys are "filename", "img", "img_shape", "ori_shape" (same as `img_shape`), "pad_shape" (same as `img_shape`), "scale_factor" (1.0) and "img_norm_cfg" (means=0 and stds=1). Args: to_float32 (bool): Whether to convert the loaded image to a float32 numpy array. If set to False, the loaded image is an uint8 array. Defaults to False. color_type (str): The flag argument for :func:`mmcv.imfrombytes`. Defaults to 'color'. file_client_args (dict): Arguments to instantiate a FileClient. See :class:`mmcv.fileio.FileClient` for details. Defaults to ``dict(backend='disk')``. imdecode_backend (str): Backend for :func:`mmcv.imdecode`. Default: 'cv2' """ def __init__(self, to_float32=False, color_type='color', file_client_args=dict(backend='disk'), imdecode_backend='cv2'): self.to_float32 = to_float32 self.color_type = color_type self.file_client_args = file_client_args.copy() self.file_client = None self.imdecode_backend = imdecode_backend def __call__(self, results): """Call functions to load image and get image meta information. Args: results (dict): Result dict from :obj:`mmseg.CustomDataset`. Returns: dict: The dict contains loaded image and meta information. """ if self.file_client is None: self.file_client = mmcv.FileClient(**self.file_client_args) if results.get('img_prefix') is not None: filename = osp.join(results['img_prefix'], results['img_info']['filename']) else: filename = results['img_info']['filename'] img_bytes = self.file_client.get(filename) img = mmcv.imfrombytes( img_bytes, flag=self.color_type, backend=self.imdecode_backend) if self.to_float32: img = img.astype(np.float32) results['filename'] = filename results['ori_filename'] = results['img_info']['filename'] results['img'] = img results['img_shape'] = img.shape results['ori_shape'] = img.shape # Set initial values for default meta_keys results['pad_shape'] = img.shape results['scale_factor'] = 1.0 num_channels = 1 if len(img.shape) < 3 else img.shape[2] results['img_norm_cfg'] = dict( mean=np.zeros(num_channels, dtype=np.float32), std=np.ones(num_channels, dtype=np.float32), to_rgb=False) return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(to_float32={self.to_float32},' repr_str += f"color_type='{self.color_type}'," repr_str += f"imdecode_backend='{self.imdecode_backend}')" return repr_str @PIPELINES.register_module() class LoadAnnotations(object): """Load annotations for semantic segmentation. Args: reduce_zero_label (bool): Whether reduce all label value by 1. Usually used for datasets where 0 is background label. Default: False. file_client_args (dict): Arguments to instantiate a FileClient. See :class:`mmcv.fileio.FileClient` for details. Defaults to ``dict(backend='disk')``. imdecode_backend (str): Backend for :func:`mmcv.imdecode`. Default: 'pillow' """ def __init__(self, reduce_zero_label=False, file_client_args=dict(backend='disk'), imdecode_backend='pillow'): self.reduce_zero_label = reduce_zero_label self.file_client_args = file_client_args.copy() self.file_client = None self.imdecode_backend = imdecode_backend def __call__(self, results): """Call function to load multiple types annotations. Args: results (dict): Result dict from :obj:`mmseg.CustomDataset`. Returns: dict: The dict contains loaded semantic segmentation annotations. """ if self.file_client is None: self.file_client = mmcv.FileClient(**self.file_client_args) if results.get('seg_prefix', None) is not None: filename = osp.join(results['seg_prefix'], results['ann_info']['seg_map']) else: filename = results['ann_info']['seg_map'] img_bytes = self.file_client.get(filename) gt_semantic_seg = mmcv.imfrombytes( img_bytes, flag='unchanged', backend=self.imdecode_backend).squeeze().astype(np.uint8) # modify if custom classes if results.get('label_map', None) is not None: for old_id, new_id in results['label_map'].items(): gt_semantic_seg[gt_semantic_seg == old_id] = new_id # reduce zero_label if self.reduce_zero_label: # avoid using underflow conversion gt_semantic_seg[gt_semantic_seg == 0] = 255 gt_semantic_seg = gt_semantic_seg - 1 gt_semantic_seg[gt_semantic_seg == 254] = 255 results['gt_semantic_seg'] = gt_semantic_seg results['seg_fields'].append('gt_semantic_seg') return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(reduce_zero_label={self.reduce_zero_label},' repr_str += f"imdecode_backend='{self.imdecode_backend}')" return repr_str