import cv2 import numpy as np import torch import os from einops import rearrange from .models.mbv2_mlsd_tiny import MobileV2_MLSD_Tiny from .models.mbv2_mlsd_large import MobileV2_MLSD_Large from .utils import pred_lines from modules import devices from annotator.annotator_path import models_path mlsdmodel = None remote_model_path = "https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/mlsd_large_512_fp32.pth" old_modeldir = os.path.dirname(os.path.realpath(__file__)) modeldir = os.path.join(models_path, "mlsd") def unload_mlsd_model(): global mlsdmodel if mlsdmodel is not None: mlsdmodel = mlsdmodel.cpu() def apply_mlsd(input_image, thr_v, thr_d): global modelpath, mlsdmodel if mlsdmodel is None: modelpath = os.path.join(modeldir, "mlsd_large_512_fp32.pth") old_modelpath = os.path.join(old_modeldir, "mlsd_large_512_fp32.pth") if os.path.exists(old_modelpath): modelpath = old_modelpath elif not os.path.exists(modelpath): from basicsr.utils.download_util import load_file_from_url load_file_from_url(remote_model_path, model_dir=modeldir) mlsdmodel = MobileV2_MLSD_Large() mlsdmodel.load_state_dict(torch.load(modelpath), strict=True) mlsdmodel = mlsdmodel.to(devices.get_device_for("controlnet")).eval() model = mlsdmodel assert input_image.ndim == 3 img = input_image img_output = np.zeros_like(img) try: with torch.no_grad(): lines = pred_lines(img, model, [img.shape[0], img.shape[1]], thr_v, thr_d) for line in lines: x_start, y_start, x_end, y_end = [int(val) for val in line] cv2.line(img_output, (x_start, y_start), (x_end, y_end), [255, 255, 255], 1) except Exception as e: pass return img_output[:, :, 0]