Spaces:
Paused
Paused
import base64 | |
import io | |
import os | |
import time | |
import datetime | |
import uvicorn | |
import ipaddress | |
import requests | |
import gradio as gr | |
from threading import Lock | |
from io import BytesIO | |
from fastapi import APIRouter, Depends, FastAPI, Request, Response | |
from fastapi.security import HTTPBasic, HTTPBasicCredentials | |
from fastapi.exceptions import HTTPException | |
from fastapi.responses import JSONResponse | |
from fastapi.encoders import jsonable_encoder | |
from secrets import compare_digest | |
import modules.shared as shared | |
from modules import sd_samplers, deepbooru, sd_hijack, images, scripts, ui, postprocessing, errors, restart, shared_items | |
from modules.api import models | |
from modules.shared import opts | |
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images | |
from modules.textual_inversion.textual_inversion import create_embedding, train_embedding | |
from modules.textual_inversion.preprocess import preprocess | |
from modules.hypernetworks.hypernetwork import create_hypernetwork, train_hypernetwork | |
from PIL import PngImagePlugin,Image | |
from modules.sd_models import unload_model_weights, reload_model_weights, checkpoint_aliases | |
from modules.sd_models_config import find_checkpoint_config_near_filename | |
from modules.realesrgan_model import get_realesrgan_models | |
from modules import devices | |
from typing import Dict, List, Any | |
import piexif | |
import piexif.helper | |
from contextlib import closing | |
def script_name_to_index(name, scripts): | |
try: | |
return [script.title().lower() for script in scripts].index(name.lower()) | |
except Exception as e: | |
raise HTTPException(status_code=422, detail=f"Script '{name}' not found") from e | |
def validate_sampler_name(name): | |
config = sd_samplers.all_samplers_map.get(name, None) | |
if config is None: | |
raise HTTPException(status_code=404, detail="Sampler not found") | |
return name | |
def setUpscalers(req: dict): | |
reqDict = vars(req) | |
reqDict['extras_upscaler_1'] = reqDict.pop('upscaler_1', None) | |
reqDict['extras_upscaler_2'] = reqDict.pop('upscaler_2', None) | |
return reqDict | |
def verify_url(url): | |
"""Returns True if the url refers to a global resource.""" | |
import socket | |
from urllib.parse import urlparse | |
try: | |
parsed_url = urlparse(url) | |
domain_name = parsed_url.netloc | |
host = socket.gethostbyname_ex(domain_name) | |
for ip in host[2]: | |
ip_addr = ipaddress.ip_address(ip) | |
if not ip_addr.is_global: | |
return False | |
except Exception: | |
return False | |
return True | |
def decode_base64_to_image(encoding): | |
if encoding.startswith("http://") or encoding.startswith("https://"): | |
if not opts.api_enable_requests: | |
raise HTTPException(status_code=500, detail="Requests not allowed") | |
if opts.api_forbid_local_requests and not verify_url(encoding): | |
raise HTTPException(status_code=500, detail="Request to local resource not allowed") | |
headers = {'user-agent': opts.api_useragent} if opts.api_useragent else {} | |
response = requests.get(encoding, timeout=30, headers=headers) | |
try: | |
image = Image.open(BytesIO(response.content)) | |
return image | |
except Exception as e: | |
raise HTTPException(status_code=500, detail="Invalid image url") from e | |
if encoding.startswith("data:image/"): | |
encoding = encoding.split(";")[1].split(",")[1] | |
try: | |
image = Image.open(BytesIO(base64.b64decode(encoding))) | |
return image | |
except Exception as e: | |
raise HTTPException(status_code=500, detail="Invalid encoded image") from e | |
def encode_pil_to_base64(image): | |
with io.BytesIO() as output_bytes: | |
if opts.samples_format.lower() == 'png': | |
use_metadata = False | |
metadata = PngImagePlugin.PngInfo() | |
for key, value in image.info.items(): | |
if isinstance(key, str) and isinstance(value, str): | |
metadata.add_text(key, value) | |
use_metadata = True | |
image.save(output_bytes, format="PNG", pnginfo=(metadata if use_metadata else None), quality=opts.jpeg_quality) | |
elif opts.samples_format.lower() in ("jpg", "jpeg", "webp"): | |
if image.mode == "RGBA": | |
image = image.convert("RGB") | |
parameters = image.info.get('parameters', None) | |
exif_bytes = piexif.dump({ | |
"Exif": { piexif.ExifIFD.UserComment: piexif.helper.UserComment.dump(parameters or "", encoding="unicode") } | |
}) | |
if opts.samples_format.lower() in ("jpg", "jpeg"): | |
image.save(output_bytes, format="JPEG", exif = exif_bytes, quality=opts.jpeg_quality) | |
else: | |
image.save(output_bytes, format="WEBP", exif = exif_bytes, quality=opts.jpeg_quality) | |
else: | |
raise HTTPException(status_code=500, detail="Invalid image format") | |
bytes_data = output_bytes.getvalue() | |
return base64.b64encode(bytes_data) | |
def api_middleware(app: FastAPI): | |
rich_available = False | |
try: | |
if os.environ.get('WEBUI_RICH_EXCEPTIONS', None) is not None: | |
import anyio # importing just so it can be placed on silent list | |
import starlette # importing just so it can be placed on silent list | |
from rich.console import Console | |
console = Console() | |
rich_available = True | |
except Exception: | |
pass | |
async def log_and_time(req: Request, call_next): | |
ts = time.time() | |
res: Response = await call_next(req) | |
duration = str(round(time.time() - ts, 4)) | |
res.headers["X-Process-Time"] = duration | |
endpoint = req.scope.get('path', 'err') | |
if shared.cmd_opts.api_log and endpoint.startswith('/sdapi'): | |
print('API {t} {code} {prot}/{ver} {method} {endpoint} {cli} {duration}'.format( | |
t=datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f"), | |
code=res.status_code, | |
ver=req.scope.get('http_version', '0.0'), | |
cli=req.scope.get('client', ('0:0.0.0', 0))[0], | |
prot=req.scope.get('scheme', 'err'), | |
method=req.scope.get('method', 'err'), | |
endpoint=endpoint, | |
duration=duration, | |
)) | |
return res | |
def handle_exception(request: Request, e: Exception): | |
err = { | |
"error": type(e).__name__, | |
"detail": vars(e).get('detail', ''), | |
"body": vars(e).get('body', ''), | |
"errors": str(e), | |
} | |
if not isinstance(e, HTTPException): # do not print backtrace on known httpexceptions | |
message = f"API error: {request.method}: {request.url} {err}" | |
if rich_available: | |
print(message) | |
console.print_exception(show_locals=True, max_frames=2, extra_lines=1, suppress=[anyio, starlette], word_wrap=False, width=min([console.width, 200])) | |
else: | |
errors.report(message, exc_info=True) | |
return JSONResponse(status_code=vars(e).get('status_code', 500), content=jsonable_encoder(err)) | |
async def exception_handling(request: Request, call_next): | |
try: | |
return await call_next(request) | |
except Exception as e: | |
return handle_exception(request, e) | |
async def fastapi_exception_handler(request: Request, e: Exception): | |
return handle_exception(request, e) | |
async def http_exception_handler(request: Request, e: HTTPException): | |
return handle_exception(request, e) | |
class Api: | |
def __init__(self, app: FastAPI, queue_lock: Lock): | |
if shared.cmd_opts.api_auth: | |
self.credentials = {} | |
for auth in shared.cmd_opts.api_auth.split(","): | |
user, password = auth.split(":") | |
self.credentials[user] = password | |
self.router = APIRouter() | |
self.app = app | |
self.queue_lock = queue_lock | |
api_middleware(self.app) | |
self.add_api_route("/sdapi/v1/txt2img", self.text2imgapi, methods=["POST"], response_model=models.TextToImageResponse) | |
self.add_api_route("/sdapi/v1/img2img", self.img2imgapi, methods=["POST"], response_model=models.ImageToImageResponse) | |
self.add_api_route("/sdapi/v1/extra-single-image", self.extras_single_image_api, methods=["POST"], response_model=models.ExtrasSingleImageResponse) | |
self.add_api_route("/sdapi/v1/extra-batch-images", self.extras_batch_images_api, methods=["POST"], response_model=models.ExtrasBatchImagesResponse) | |
self.add_api_route("/sdapi/v1/png-info", self.pnginfoapi, methods=["POST"], response_model=models.PNGInfoResponse) | |
self.add_api_route("/sdapi/v1/progress", self.progressapi, methods=["GET"], response_model=models.ProgressResponse) | |
self.add_api_route("/sdapi/v1/interrogate", self.interrogateapi, methods=["POST"]) | |
self.add_api_route("/sdapi/v1/interrupt", self.interruptapi, methods=["POST"]) | |
self.add_api_route("/sdapi/v1/skip", self.skip, methods=["POST"]) | |
self.add_api_route("/sdapi/v1/options", self.get_config, methods=["GET"], response_model=models.OptionsModel) | |
self.add_api_route("/sdapi/v1/options", self.set_config, methods=["POST"]) | |
self.add_api_route("/sdapi/v1/cmd-flags", self.get_cmd_flags, methods=["GET"], response_model=models.FlagsModel) | |
self.add_api_route("/sdapi/v1/samplers", self.get_samplers, methods=["GET"], response_model=List[models.SamplerItem]) | |
self.add_api_route("/sdapi/v1/upscalers", self.get_upscalers, methods=["GET"], response_model=List[models.UpscalerItem]) | |
self.add_api_route("/sdapi/v1/latent-upscale-modes", self.get_latent_upscale_modes, methods=["GET"], response_model=List[models.LatentUpscalerModeItem]) | |
self.add_api_route("/sdapi/v1/sd-models", self.get_sd_models, methods=["GET"], response_model=List[models.SDModelItem]) | |
self.add_api_route("/sdapi/v1/sd-vae", self.get_sd_vaes, methods=["GET"], response_model=List[models.SDVaeItem]) | |
self.add_api_route("/sdapi/v1/hypernetworks", self.get_hypernetworks, methods=["GET"], response_model=List[models.HypernetworkItem]) | |
self.add_api_route("/sdapi/v1/face-restorers", self.get_face_restorers, methods=["GET"], response_model=List[models.FaceRestorerItem]) | |
self.add_api_route("/sdapi/v1/realesrgan-models", self.get_realesrgan_models, methods=["GET"], response_model=List[models.RealesrganItem]) | |
self.add_api_route("/sdapi/v1/prompt-styles", self.get_prompt_styles, methods=["GET"], response_model=List[models.PromptStyleItem]) | |
self.add_api_route("/sdapi/v1/embeddings", self.get_embeddings, methods=["GET"], response_model=models.EmbeddingsResponse) | |
self.add_api_route("/sdapi/v1/refresh-checkpoints", self.refresh_checkpoints, methods=["POST"]) | |
self.add_api_route("/sdapi/v1/refresh-vae", self.refresh_vae, methods=["POST"]) | |
self.add_api_route("/sdapi/v1/create/embedding", self.create_embedding, methods=["POST"], response_model=models.CreateResponse) | |
self.add_api_route("/sdapi/v1/create/hypernetwork", self.create_hypernetwork, methods=["POST"], response_model=models.CreateResponse) | |
self.add_api_route("/sdapi/v1/preprocess", self.preprocess, methods=["POST"], response_model=models.PreprocessResponse) | |
self.add_api_route("/sdapi/v1/train/embedding", self.train_embedding, methods=["POST"], response_model=models.TrainResponse) | |
self.add_api_route("/sdapi/v1/train/hypernetwork", self.train_hypernetwork, methods=["POST"], response_model=models.TrainResponse) | |
self.add_api_route("/sdapi/v1/memory", self.get_memory, methods=["GET"], response_model=models.MemoryResponse) | |
self.add_api_route("/sdapi/v1/unload-checkpoint", self.unloadapi, methods=["POST"]) | |
self.add_api_route("/sdapi/v1/reload-checkpoint", self.reloadapi, methods=["POST"]) | |
self.add_api_route("/sdapi/v1/scripts", self.get_scripts_list, methods=["GET"], response_model=models.ScriptsList) | |
self.add_api_route("/sdapi/v1/script-info", self.get_script_info, methods=["GET"], response_model=List[models.ScriptInfo]) | |
if shared.cmd_opts.api_server_stop: | |
self.add_api_route("/sdapi/v1/server-kill", self.kill_webui, methods=["POST"]) | |
self.add_api_route("/sdapi/v1/server-restart", self.restart_webui, methods=["POST"]) | |
self.add_api_route("/sdapi/v1/server-stop", self.stop_webui, methods=["POST"]) | |
self.default_script_arg_txt2img = [] | |
self.default_script_arg_img2img = [] | |
def add_api_route(self, path: str, endpoint, **kwargs): | |
if shared.cmd_opts.api_auth: | |
return self.app.add_api_route(path, endpoint, dependencies=[Depends(self.auth)], **kwargs) | |
return self.app.add_api_route(path, endpoint, **kwargs) | |
def auth(self, credentials: HTTPBasicCredentials = Depends(HTTPBasic())): | |
if credentials.username in self.credentials: | |
if compare_digest(credentials.password, self.credentials[credentials.username]): | |
return True | |
raise HTTPException(status_code=401, detail="Incorrect username or password", headers={"WWW-Authenticate": "Basic"}) | |
def get_selectable_script(self, script_name, script_runner): | |
if script_name is None or script_name == "": | |
return None, None | |
script_idx = script_name_to_index(script_name, script_runner.selectable_scripts) | |
script = script_runner.selectable_scripts[script_idx] | |
return script, script_idx | |
def get_scripts_list(self): | |
t2ilist = [script.name for script in scripts.scripts_txt2img.scripts if script.name is not None] | |
i2ilist = [script.name for script in scripts.scripts_img2img.scripts if script.name is not None] | |
return models.ScriptsList(txt2img=t2ilist, img2img=i2ilist) | |
def get_script_info(self): | |
res = [] | |
for script_list in [scripts.scripts_txt2img.scripts, scripts.scripts_img2img.scripts]: | |
res += [script.api_info for script in script_list if script.api_info is not None] | |
return res | |
def get_script(self, script_name, script_runner): | |
if script_name is None or script_name == "": | |
return None, None | |
script_idx = script_name_to_index(script_name, script_runner.scripts) | |
return script_runner.scripts[script_idx] | |
def init_default_script_args(self, script_runner): | |
#find max idx from the scripts in runner and generate a none array to init script_args | |
last_arg_index = 1 | |
for script in script_runner.scripts: | |
if last_arg_index < script.args_to: | |
last_arg_index = script.args_to | |
# None everywhere except position 0 to initialize script args | |
script_args = [None]*last_arg_index | |
script_args[0] = 0 | |
# get default values | |
with gr.Blocks(): # will throw errors calling ui function without this | |
for script in script_runner.scripts: | |
if script.ui(script.is_img2img): | |
ui_default_values = [] | |
for elem in script.ui(script.is_img2img): | |
ui_default_values.append(elem.value) | |
script_args[script.args_from:script.args_to] = ui_default_values | |
return script_args | |
def init_script_args(self, request, default_script_args, selectable_scripts, selectable_idx, script_runner): | |
script_args = default_script_args.copy() | |
# position 0 in script_arg is the idx+1 of the selectable script that is going to be run when using scripts.scripts_*2img.run() | |
if selectable_scripts: | |
script_args[selectable_scripts.args_from:selectable_scripts.args_to] = request.script_args | |
script_args[0] = selectable_idx + 1 | |
# Now check for always on scripts | |
if request.alwayson_scripts: | |
for alwayson_script_name in request.alwayson_scripts.keys(): | |
alwayson_script = self.get_script(alwayson_script_name, script_runner) | |
if alwayson_script is None: | |
raise HTTPException(status_code=422, detail=f"always on script {alwayson_script_name} not found") | |
# Selectable script in always on script param check | |
if alwayson_script.alwayson is False: | |
raise HTTPException(status_code=422, detail="Cannot have a selectable script in the always on scripts params") | |
# always on script with no arg should always run so you don't really need to add them to the requests | |
if "args" in request.alwayson_scripts[alwayson_script_name]: | |
# min between arg length in scriptrunner and arg length in the request | |
for idx in range(0, min((alwayson_script.args_to - alwayson_script.args_from), len(request.alwayson_scripts[alwayson_script_name]["args"]))): | |
script_args[alwayson_script.args_from + idx] = request.alwayson_scripts[alwayson_script_name]["args"][idx] | |
return script_args | |
def text2imgapi(self, txt2imgreq: models.StableDiffusionTxt2ImgProcessingAPI): | |
script_runner = scripts.scripts_txt2img | |
if not script_runner.scripts: | |
script_runner.initialize_scripts(False) | |
ui.create_ui() | |
if not self.default_script_arg_txt2img: | |
self.default_script_arg_txt2img = self.init_default_script_args(script_runner) | |
selectable_scripts, selectable_script_idx = self.get_selectable_script(txt2imgreq.script_name, script_runner) | |
populate = txt2imgreq.copy(update={ # Override __init__ params | |
"sampler_name": validate_sampler_name(txt2imgreq.sampler_name or txt2imgreq.sampler_index), | |
"do_not_save_samples": not txt2imgreq.save_images, | |
"do_not_save_grid": not txt2imgreq.save_images, | |
}) | |
if populate.sampler_name: | |
populate.sampler_index = None # prevent a warning later on | |
args = vars(populate) | |
args.pop('script_name', None) | |
args.pop('script_args', None) # will refeed them to the pipeline directly after initializing them | |
args.pop('alwayson_scripts', None) | |
script_args = self.init_script_args(txt2imgreq, self.default_script_arg_txt2img, selectable_scripts, selectable_script_idx, script_runner) | |
send_images = args.pop('send_images', True) | |
args.pop('save_images', None) | |
with self.queue_lock: | |
with closing(StableDiffusionProcessingTxt2Img(sd_model=shared.sd_model, **args)) as p: | |
p.is_api = True | |
p.scripts = script_runner | |
p.outpath_grids = opts.outdir_txt2img_grids | |
p.outpath_samples = opts.outdir_txt2img_samples | |
try: | |
shared.state.begin(job="scripts_txt2img") | |
if selectable_scripts is not None: | |
p.script_args = script_args | |
processed = scripts.scripts_txt2img.run(p, *p.script_args) # Need to pass args as list here | |
else: | |
p.script_args = tuple(script_args) # Need to pass args as tuple here | |
processed = process_images(p) | |
finally: | |
shared.state.end() | |
shared.total_tqdm.clear() | |
b64images = list(map(encode_pil_to_base64, processed.images)) if send_images else [] | |
return models.TextToImageResponse(images=b64images, parameters=vars(txt2imgreq), info=processed.js()) | |
def img2imgapi(self, img2imgreq: models.StableDiffusionImg2ImgProcessingAPI): | |
init_images = img2imgreq.init_images | |
if init_images is None: | |
raise HTTPException(status_code=404, detail="Init image not found") | |
mask = img2imgreq.mask | |
if mask: | |
mask = decode_base64_to_image(mask) | |
script_runner = scripts.scripts_img2img | |
if not script_runner.scripts: | |
script_runner.initialize_scripts(True) | |
ui.create_ui() | |
if not self.default_script_arg_img2img: | |
self.default_script_arg_img2img = self.init_default_script_args(script_runner) | |
selectable_scripts, selectable_script_idx = self.get_selectable_script(img2imgreq.script_name, script_runner) | |
populate = img2imgreq.copy(update={ # Override __init__ params | |
"sampler_name": validate_sampler_name(img2imgreq.sampler_name or img2imgreq.sampler_index), | |
"do_not_save_samples": not img2imgreq.save_images, | |
"do_not_save_grid": not img2imgreq.save_images, | |
"mask": mask, | |
}) | |
if populate.sampler_name: | |
populate.sampler_index = None # prevent a warning later on | |
args = vars(populate) | |
args.pop('include_init_images', None) # this is meant to be done by "exclude": True in model, but it's for a reason that I cannot determine. | |
args.pop('script_name', None) | |
args.pop('script_args', None) # will refeed them to the pipeline directly after initializing them | |
args.pop('alwayson_scripts', None) | |
script_args = self.init_script_args(img2imgreq, self.default_script_arg_img2img, selectable_scripts, selectable_script_idx, script_runner) | |
send_images = args.pop('send_images', True) | |
args.pop('save_images', None) | |
with self.queue_lock: | |
with closing(StableDiffusionProcessingImg2Img(sd_model=shared.sd_model, **args)) as p: | |
p.init_images = [decode_base64_to_image(x) for x in init_images] | |
p.is_api = True | |
p.scripts = script_runner | |
p.outpath_grids = opts.outdir_img2img_grids | |
p.outpath_samples = opts.outdir_img2img_samples | |
try: | |
shared.state.begin(job="scripts_img2img") | |
if selectable_scripts is not None: | |
p.script_args = script_args | |
processed = scripts.scripts_img2img.run(p, *p.script_args) # Need to pass args as list here | |
else: | |
p.script_args = tuple(script_args) # Need to pass args as tuple here | |
processed = process_images(p) | |
finally: | |
shared.state.end() | |
shared.total_tqdm.clear() | |
b64images = list(map(encode_pil_to_base64, processed.images)) if send_images else [] | |
if not img2imgreq.include_init_images: | |
img2imgreq.init_images = None | |
img2imgreq.mask = None | |
return models.ImageToImageResponse(images=b64images, parameters=vars(img2imgreq), info=processed.js()) | |
def extras_single_image_api(self, req: models.ExtrasSingleImageRequest): | |
reqDict = setUpscalers(req) | |
reqDict['image'] = decode_base64_to_image(reqDict['image']) | |
with self.queue_lock: | |
result = postprocessing.run_extras(extras_mode=0, image_folder="", input_dir="", output_dir="", save_output=False, **reqDict) | |
return models.ExtrasSingleImageResponse(image=encode_pil_to_base64(result[0][0]), html_info=result[1]) | |
def extras_batch_images_api(self, req: models.ExtrasBatchImagesRequest): | |
reqDict = setUpscalers(req) | |
image_list = reqDict.pop('imageList', []) | |
image_folder = [decode_base64_to_image(x.data) for x in image_list] | |
with self.queue_lock: | |
result = postprocessing.run_extras(extras_mode=1, image_folder=image_folder, image="", input_dir="", output_dir="", save_output=False, **reqDict) | |
return models.ExtrasBatchImagesResponse(images=list(map(encode_pil_to_base64, result[0])), html_info=result[1]) | |
def pnginfoapi(self, req: models.PNGInfoRequest): | |
if(not req.image.strip()): | |
return models.PNGInfoResponse(info="") | |
image = decode_base64_to_image(req.image.strip()) | |
if image is None: | |
return models.PNGInfoResponse(info="") | |
geninfo, items = images.read_info_from_image(image) | |
if geninfo is None: | |
geninfo = "" | |
items = {**{'parameters': geninfo}, **items} | |
return models.PNGInfoResponse(info=geninfo, items=items) | |
def progressapi(self, req: models.ProgressRequest = Depends()): | |
# copy from check_progress_call of ui.py | |
if shared.state.job_count == 0: | |
return models.ProgressResponse(progress=0, eta_relative=0, state=shared.state.dict(), textinfo=shared.state.textinfo) | |
# avoid dividing zero | |
progress = 0.01 | |
if shared.state.job_count > 0: | |
progress += shared.state.job_no / shared.state.job_count | |
if shared.state.sampling_steps > 0: | |
progress += 1 / shared.state.job_count * shared.state.sampling_step / shared.state.sampling_steps | |
time_since_start = time.time() - shared.state.time_start | |
eta = (time_since_start/progress) | |
eta_relative = eta-time_since_start | |
progress = min(progress, 1) | |
shared.state.set_current_image() | |
current_image = None | |
if shared.state.current_image and not req.skip_current_image: | |
current_image = encode_pil_to_base64(shared.state.current_image) | |
return models.ProgressResponse(progress=progress, eta_relative=eta_relative, state=shared.state.dict(), current_image=current_image, textinfo=shared.state.textinfo) | |
def interrogateapi(self, interrogatereq: models.InterrogateRequest): | |
image_b64 = interrogatereq.image | |
if image_b64 is None: | |
raise HTTPException(status_code=404, detail="Image not found") | |
img = decode_base64_to_image(image_b64) | |
img = img.convert('RGB') | |
# Override object param | |
with self.queue_lock: | |
if interrogatereq.model == "clip": | |
processed = shared.interrogator.interrogate(img) | |
elif interrogatereq.model == "deepdanbooru": | |
processed = deepbooru.model.tag(img) | |
else: | |
raise HTTPException(status_code=404, detail="Model not found") | |
return models.InterrogateResponse(caption=processed) | |
def interruptapi(self): | |
shared.state.interrupt() | |
return {} | |
def unloadapi(self): | |
unload_model_weights() | |
return {} | |
def reloadapi(self): | |
reload_model_weights() | |
return {} | |
def skip(self): | |
shared.state.skip() | |
def get_config(self): | |
options = {} | |
for key in shared.opts.data.keys(): | |
metadata = shared.opts.data_labels.get(key) | |
if(metadata is not None): | |
options.update({key: shared.opts.data.get(key, shared.opts.data_labels.get(key).default)}) | |
else: | |
options.update({key: shared.opts.data.get(key, None)}) | |
return options | |
def set_config(self, req: Dict[str, Any]): | |
checkpoint_name = req.get("sd_model_checkpoint", None) | |
if checkpoint_name is not None and checkpoint_name not in checkpoint_aliases: | |
raise RuntimeError(f"model {checkpoint_name!r} not found") | |
for k, v in req.items(): | |
shared.opts.set(k, v, is_api=True) | |
shared.opts.save(shared.config_filename) | |
return | |
def get_cmd_flags(self): | |
return vars(shared.cmd_opts) | |
def get_samplers(self): | |
return [{"name": sampler[0], "aliases":sampler[2], "options":sampler[3]} for sampler in sd_samplers.all_samplers] | |
def get_upscalers(self): | |
return [ | |
{ | |
"name": upscaler.name, | |
"model_name": upscaler.scaler.model_name, | |
"model_path": upscaler.data_path, | |
"model_url": None, | |
"scale": upscaler.scale, | |
} | |
for upscaler in shared.sd_upscalers | |
] | |
def get_latent_upscale_modes(self): | |
return [ | |
{ | |
"name": upscale_mode, | |
} | |
for upscale_mode in [*(shared.latent_upscale_modes or {})] | |
] | |
def get_sd_models(self): | |
import modules.sd_models as sd_models | |
return [{"title": x.title, "model_name": x.model_name, "hash": x.shorthash, "sha256": x.sha256, "filename": x.filename, "config": find_checkpoint_config_near_filename(x)} for x in sd_models.checkpoints_list.values()] | |
def get_sd_vaes(self): | |
import modules.sd_vae as sd_vae | |
return [{"model_name": x, "filename": sd_vae.vae_dict[x]} for x in sd_vae.vae_dict.keys()] | |
def get_hypernetworks(self): | |
return [{"name": name, "path": shared.hypernetworks[name]} for name in shared.hypernetworks] | |
def get_face_restorers(self): | |
return [{"name":x.name(), "cmd_dir": getattr(x, "cmd_dir", None)} for x in shared.face_restorers] | |
def get_realesrgan_models(self): | |
return [{"name":x.name,"path":x.data_path, "scale":x.scale} for x in get_realesrgan_models(None)] | |
def get_prompt_styles(self): | |
styleList = [] | |
for k in shared.prompt_styles.styles: | |
style = shared.prompt_styles.styles[k] | |
styleList.append({"name":style[0], "prompt": style[1], "negative_prompt": style[2]}) | |
return styleList | |
def get_embeddings(self): | |
db = sd_hijack.model_hijack.embedding_db | |
def convert_embedding(embedding): | |
return { | |
"step": embedding.step, | |
"sd_checkpoint": embedding.sd_checkpoint, | |
"sd_checkpoint_name": embedding.sd_checkpoint_name, | |
"shape": embedding.shape, | |
"vectors": embedding.vectors, | |
} | |
def convert_embeddings(embeddings): | |
return {embedding.name: convert_embedding(embedding) for embedding in embeddings.values()} | |
return { | |
"loaded": convert_embeddings(db.word_embeddings), | |
"skipped": convert_embeddings(db.skipped_embeddings), | |
} | |
def refresh_checkpoints(self): | |
with self.queue_lock: | |
shared.refresh_checkpoints() | |
def refresh_vae(self): | |
with self.queue_lock: | |
shared_items.refresh_vae_list() | |
def create_embedding(self, args: dict): | |
try: | |
shared.state.begin(job="create_embedding") | |
filename = create_embedding(**args) # create empty embedding | |
sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings() # reload embeddings so new one can be immediately used | |
return models.CreateResponse(info=f"create embedding filename: {filename}") | |
except AssertionError as e: | |
return models.TrainResponse(info=f"create embedding error: {e}") | |
finally: | |
shared.state.end() | |
def create_hypernetwork(self, args: dict): | |
try: | |
shared.state.begin(job="create_hypernetwork") | |
filename = create_hypernetwork(**args) # create empty embedding | |
return models.CreateResponse(info=f"create hypernetwork filename: {filename}") | |
except AssertionError as e: | |
return models.TrainResponse(info=f"create hypernetwork error: {e}") | |
finally: | |
shared.state.end() | |
def preprocess(self, args: dict): | |
try: | |
shared.state.begin(job="preprocess") | |
preprocess(**args) # quick operation unless blip/booru interrogation is enabled | |
shared.state.end() | |
return models.PreprocessResponse(info='preprocess complete') | |
except KeyError as e: | |
return models.PreprocessResponse(info=f"preprocess error: invalid token: {e}") | |
except Exception as e: | |
return models.PreprocessResponse(info=f"preprocess error: {e}") | |
finally: | |
shared.state.end() | |
def train_embedding(self, args: dict): | |
try: | |
shared.state.begin(job="train_embedding") | |
apply_optimizations = shared.opts.training_xattention_optimizations | |
error = None | |
filename = '' | |
if not apply_optimizations: | |
sd_hijack.undo_optimizations() | |
try: | |
embedding, filename = train_embedding(**args) # can take a long time to complete | |
except Exception as e: | |
error = e | |
finally: | |
if not apply_optimizations: | |
sd_hijack.apply_optimizations() | |
return models.TrainResponse(info=f"train embedding complete: filename: {filename} error: {error}") | |
except Exception as msg: | |
return models.TrainResponse(info=f"train embedding error: {msg}") | |
finally: | |
shared.state.end() | |
def train_hypernetwork(self, args: dict): | |
try: | |
shared.state.begin(job="train_hypernetwork") | |
shared.loaded_hypernetworks = [] | |
apply_optimizations = shared.opts.training_xattention_optimizations | |
error = None | |
filename = '' | |
if not apply_optimizations: | |
sd_hijack.undo_optimizations() | |
try: | |
hypernetwork, filename = train_hypernetwork(**args) | |
except Exception as e: | |
error = e | |
finally: | |
shared.sd_model.cond_stage_model.to(devices.device) | |
shared.sd_model.first_stage_model.to(devices.device) | |
if not apply_optimizations: | |
sd_hijack.apply_optimizations() | |
shared.state.end() | |
return models.TrainResponse(info=f"train embedding complete: filename: {filename} error: {error}") | |
except Exception as exc: | |
return models.TrainResponse(info=f"train embedding error: {exc}") | |
finally: | |
shared.state.end() | |
def get_memory(self): | |
try: | |
import os | |
import psutil | |
process = psutil.Process(os.getpid()) | |
res = process.memory_info() # only rss is cross-platform guaranteed so we dont rely on other values | |
ram_total = 100 * res.rss / process.memory_percent() # and total memory is calculated as actual value is not cross-platform safe | |
ram = { 'free': ram_total - res.rss, 'used': res.rss, 'total': ram_total } | |
except Exception as err: | |
ram = { 'error': f'{err}' } | |
try: | |
import torch | |
if torch.cuda.is_available(): | |
s = torch.cuda.mem_get_info() | |
system = { 'free': s[0], 'used': s[1] - s[0], 'total': s[1] } | |
s = dict(torch.cuda.memory_stats(shared.device)) | |
allocated = { 'current': s['allocated_bytes.all.current'], 'peak': s['allocated_bytes.all.peak'] } | |
reserved = { 'current': s['reserved_bytes.all.current'], 'peak': s['reserved_bytes.all.peak'] } | |
active = { 'current': s['active_bytes.all.current'], 'peak': s['active_bytes.all.peak'] } | |
inactive = { 'current': s['inactive_split_bytes.all.current'], 'peak': s['inactive_split_bytes.all.peak'] } | |
warnings = { 'retries': s['num_alloc_retries'], 'oom': s['num_ooms'] } | |
cuda = { | |
'system': system, | |
'active': active, | |
'allocated': allocated, | |
'reserved': reserved, | |
'inactive': inactive, | |
'events': warnings, | |
} | |
else: | |
cuda = {'error': 'unavailable'} | |
except Exception as err: | |
cuda = {'error': f'{err}'} | |
return models.MemoryResponse(ram=ram, cuda=cuda) | |
def launch(self, server_name, port, root_path): | |
self.app.include_router(self.router) | |
uvicorn.run(self.app, host=server_name, port=port, timeout_keep_alive=shared.cmd_opts.timeout_keep_alive, root_path=root_path) | |
def kill_webui(self): | |
restart.stop_program() | |
def restart_webui(self): | |
if restart.is_restartable(): | |
restart.restart_program() | |
return Response(status_code=501) | |
def stop_webui(request): | |
shared.state.server_command = "stop" | |
return Response("Stopping.") | |