QuintW's picture
Upload 1350 files
5c32cd0
raw
history blame
45.3 kB
import torch
import einops
import hashlib
import numpy as np
import torch.nn as nn
from functools import partial
import modules.processing
from enum import Enum
from scripts.logging import logger
from modules import devices, lowvram, shared, scripts
cond_cast_unet = getattr(devices, 'cond_cast_unet', lambda x: x)
from ldm.modules.diffusionmodules.util import timestep_embedding, make_beta_schedule
from ldm.modules.diffusionmodules.openaimodel import UNetModel
from ldm.modules.attention import BasicTransformerBlock
from ldm.models.diffusion.ddpm import extract_into_tensor
from modules.prompt_parser import MulticondLearnedConditioning, ComposableScheduledPromptConditioning, ScheduledPromptConditioning
from modules.processing import StableDiffusionProcessing
try:
from sgm.modules.attention import BasicTransformerBlock as BasicTransformerBlockSGM
except:
print('Warning: ControlNet failed to load SGM - will use LDM instead.')
BasicTransformerBlockSGM = BasicTransformerBlock
POSITIVE_MARK_TOKEN = 1024
NEGATIVE_MARK_TOKEN = - POSITIVE_MARK_TOKEN
MARK_EPS = 1e-3
def prompt_context_is_marked(x):
t = x[..., 0, :]
m = torch.abs(t) - POSITIVE_MARK_TOKEN
m = torch.mean(torch.abs(m)).detach().cpu().float().numpy()
return float(m) < MARK_EPS
def mark_prompt_context(x, positive):
if isinstance(x, list):
for i in range(len(x)):
x[i] = mark_prompt_context(x[i], positive)
return x
if isinstance(x, MulticondLearnedConditioning):
x.batch = mark_prompt_context(x.batch, positive)
return x
if isinstance(x, ComposableScheduledPromptConditioning):
x.schedules = mark_prompt_context(x.schedules, positive)
return x
if isinstance(x, ScheduledPromptConditioning):
if isinstance(x.cond, dict):
cond = x.cond['crossattn']
if prompt_context_is_marked(cond):
return x
mark = POSITIVE_MARK_TOKEN if positive else NEGATIVE_MARK_TOKEN
cond = torch.cat([torch.zeros_like(cond)[:1] + mark, cond], dim=0)
return ScheduledPromptConditioning(end_at_step=x.end_at_step, cond=dict(crossattn=cond, vector=x.cond['vector']))
else:
cond = x.cond
if prompt_context_is_marked(cond):
return x
mark = POSITIVE_MARK_TOKEN if positive else NEGATIVE_MARK_TOKEN
cond = torch.cat([torch.zeros_like(cond)[:1] + mark, cond], dim=0)
return ScheduledPromptConditioning(end_at_step=x.end_at_step, cond=cond)
return x
disable_controlnet_prompt_warning = True
# You can disable this warning using disable_controlnet_prompt_warning.
def unmark_prompt_context(x):
if not prompt_context_is_marked(x):
# ControlNet must know whether a prompt is conditional prompt (positive prompt) or unconditional conditioning prompt (negative prompt).
# You can use the hook.py's `mark_prompt_context` to mark the prompts that will be seen by ControlNet.
# Let us say XXX is a MulticondLearnedConditioning or a ComposableScheduledPromptConditioning or a ScheduledPromptConditioning or a list of these components,
# if XXX is a positive prompt, you should call mark_prompt_context(XXX, positive=True)
# if XXX is a negative prompt, you should call mark_prompt_context(XXX, positive=False)
# After you mark the prompts, the ControlNet will know which prompt is cond/uncond and works as expected.
# After you mark the prompts, the mismatch errors will disappear.
if not disable_controlnet_prompt_warning:
logger.warning('ControlNet Error: Failed to detect whether an instance is cond or uncond!')
logger.warning('ControlNet Error: This is mainly because other extension(s) blocked A1111\'s \"process.sample()\" and deleted ControlNet\'s sample function.')
logger.warning('ControlNet Error: ControlNet will shift to a backup backend but the results will be worse than expectation.')
logger.warning('Solution (For extension developers): Take a look at ControlNet\' hook.py '
'UnetHook.hook.process_sample and manually call mark_prompt_context to mark cond/uncond prompts.')
mark_batch = torch.ones(size=(x.shape[0], 1, 1, 1), dtype=x.dtype, device=x.device)
uc_indices = []
context = x
return mark_batch, uc_indices, context
mark = x[:, 0, :]
context = x[:, 1:, :]
mark = torch.mean(torch.abs(mark - NEGATIVE_MARK_TOKEN), dim=1)
mark = (mark > MARK_EPS).float()
mark_batch = mark[:, None, None, None].to(x.dtype).to(x.device)
uc_indices = mark.detach().cpu().numpy().tolist()
uc_indices = [i for i, item in enumerate(uc_indices) if item < 0.5]
StableDiffusionProcessing.cached_c = [None, None]
StableDiffusionProcessing.cached_uc = [None, None]
return mark_batch, uc_indices, context
class HackedImageRNG:
def __init__(self, rng, noise_modifier, sd_model):
self.rng = rng
self.noise_modifier = noise_modifier
self.sd_model = sd_model
def next(self):
result = self.rng.next()
x0 = self.noise_modifier
if result.shape[2] != x0.shape[2] or result.shape[3] != x0.shape[3]:
return result
x0 = x0.to(result.dtype).to(result.device)
ts = torch.tensor([999] * result.shape[0]).long().to(result.device)
result = predict_q_sample(self.sd_model, x0, ts, result)
logger.info(f'[ControlNet] Initial noise hack applied to {result.shape}.')
return result
class ControlModelType(Enum):
"""
The type of Control Models (supported or not).
"""
ControlNet = "ControlNet, Lvmin Zhang"
T2I_Adapter = "T2I_Adapter, Chong Mou"
T2I_StyleAdapter = "T2I_StyleAdapter, Chong Mou"
T2I_CoAdapter = "T2I_CoAdapter, Chong Mou"
MasaCtrl = "MasaCtrl, Mingdeng Cao"
GLIGEN = "GLIGEN, Yuheng Li"
AttentionInjection = "AttentionInjection, Lvmin Zhang" # A simple attention injection written by Lvmin
StableSR = "StableSR, Jianyi Wang"
PromptDiffusion = "PromptDiffusion, Zhendong Wang"
ControlLoRA = "ControlLoRA, Wu Hecong"
ReVision = "ReVision, Stability"
IPAdapter = "IPAdapter, Hu Ye"
Controlllite = "Controlllite, Kohya"
# Written by Lvmin
class AutoMachine(Enum):
"""
Lvmin's algorithm for Attention/AdaIn AutoMachine States.
"""
Read = "Read"
Write = "Write"
class TorchHijackForUnet:
"""
This is torch, but with cat that resizes tensors to appropriate dimensions if they do not match;
this makes it possible to create pictures with dimensions that are multiples of 8 rather than 64
"""
def __getattr__(self, item):
if item == 'cat':
return self.cat
if hasattr(torch, item):
return getattr(torch, item)
raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, item))
def cat(self, tensors, *args, **kwargs):
if len(tensors) == 2:
a, b = tensors
if a.shape[-2:] != b.shape[-2:]:
a = torch.nn.functional.interpolate(a, b.shape[-2:], mode="nearest")
tensors = (a, b)
return torch.cat(tensors, *args, **kwargs)
th = TorchHijackForUnet()
class ControlParams:
def __init__(
self,
control_model,
preprocessor,
hint_cond,
weight,
guidance_stopped,
start_guidance_percent,
stop_guidance_percent,
advanced_weighting,
control_model_type,
hr_hint_cond,
global_average_pooling,
soft_injection,
cfg_injection,
**kwargs # To avoid errors
):
self.control_model = control_model
self.preprocessor = preprocessor
self._hint_cond = hint_cond
self.weight = weight
self.guidance_stopped = guidance_stopped
self.start_guidance_percent = start_guidance_percent
self.stop_guidance_percent = stop_guidance_percent
self.advanced_weighting = advanced_weighting
self.control_model_type = control_model_type
self.global_average_pooling = global_average_pooling
self.hr_hint_cond = hr_hint_cond
self.used_hint_cond = None
self.used_hint_cond_latent = None
self.used_hint_inpaint_hijack = None
self.soft_injection = soft_injection
self.cfg_injection = cfg_injection
self.vision_hint_count = None
@property
def hint_cond(self):
return self._hint_cond
# fix for all the extensions that modify hint_cond,
# by forcing used_hint_cond to update on the next timestep
# hr_hint_cond can stay the same, since most extensions dont modify the hires pass
# but if they do, it will cause problems
@hint_cond.setter
def hint_cond(self, new_hint_cond):
self._hint_cond = new_hint_cond
self.used_hint_cond = None
self.used_hint_cond_latent = None
self.used_hint_inpaint_hijack = None
def aligned_adding(base, x, require_channel_alignment):
if isinstance(x, float):
if x == 0.0:
return base
return base + x
if require_channel_alignment:
zeros = torch.zeros_like(base)
zeros[:, :x.shape[1], ...] = x
x = zeros
# resize to sample resolution
base_h, base_w = base.shape[-2:]
xh, xw = x.shape[-2:]
if xh > 1 or xw > 1:
if base_h != xh or base_w != xw:
# logger.info('[Warning] ControlNet finds unexpected mis-alignment in tensor shape.')
x = th.nn.functional.interpolate(x, size=(base_h, base_w), mode="nearest")
return base + x
# DFS Search for Torch.nn.Module, Written by Lvmin
def torch_dfs(model: torch.nn.Module):
result = [model]
for child in model.children():
result += torch_dfs(child)
return result
class AbstractLowScaleModel(nn.Module):
def __init__(self):
super(AbstractLowScaleModel, self).__init__()
self.register_schedule()
def register_schedule(self, beta_schedule="linear", timesteps=1000,
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
cosine_s=cosine_s)
alphas = 1. - betas
alphas_cumprod = np.cumprod(alphas, axis=0)
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
timesteps, = betas.shape
self.num_timesteps = int(timesteps)
self.linear_start = linear_start
self.linear_end = linear_end
assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
to_torch = partial(torch.tensor, dtype=torch.float32)
self.register_buffer('betas', to_torch(betas))
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
# calculations for diffusion q(x_t | x_{t-1}) and others
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
def q_sample(self, x_start, t, noise=None):
if noise is None:
noise = torch.randn_like(x_start)
return (extract_into_tensor(self.sqrt_alphas_cumprod.to(x_start), t, x_start.shape) * x_start +
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod.to(x_start), t, x_start.shape) * noise)
def register_schedule(self):
linear_start = 0.00085
linear_end = 0.0120
num_timesteps = 1000
betas = (torch.linspace(linear_start ** 0.5, linear_end ** 0.5, num_timesteps, dtype=torch.float64) ** 2.0).numpy()
alphas = 1. - betas
alphas_cumprod = np.cumprod(alphas, axis=0)
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
to_torch = partial(torch.tensor, dtype=torch.float32)
setattr(self, 'betas', to_torch(betas))
# setattr(self, 'alphas_cumprod', to_torch(alphas_cumprod)) # a1111 already has this
setattr(self, 'alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
setattr(self, 'sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
setattr(self, 'sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
setattr(self, 'log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
setattr(self, 'sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
setattr(self, 'sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
def predict_q_sample(ldm, x_start, t, noise=None):
if noise is None:
noise = torch.randn_like(x_start)
return extract_into_tensor(ldm.sqrt_alphas_cumprod.to(x_start), t, x_start.shape) * x_start + extract_into_tensor(ldm.sqrt_one_minus_alphas_cumprod.to(x_start), t, x_start.shape) * noise
def predict_start_from_noise(ldm, x_t, t, noise):
return extract_into_tensor(ldm.sqrt_recip_alphas_cumprod.to(x_t), t, x_t.shape) * x_t - extract_into_tensor(ldm.sqrt_recipm1_alphas_cumprod.to(x_t), t, x_t.shape) * noise
def predict_noise_from_start(ldm, x_t, t, x0):
return (extract_into_tensor(ldm.sqrt_recip_alphas_cumprod.to(x_t), t, x_t.shape) * x_t - x0) / extract_into_tensor(ldm.sqrt_recipm1_alphas_cumprod.to(x_t), t, x_t.shape)
def blur(x, k):
y = torch.nn.functional.pad(x, (k, k, k, k), mode='replicate')
y = torch.nn.functional.avg_pool2d(y, (k*2+1, k*2+1), stride=(1, 1))
return y
class TorchCache:
def __init__(self):
self.cache = {}
def hash(self, key):
v = key.detach().cpu().numpy().astype(np.float32)
v = (v * 1000.0).astype(np.int32)
v = np.ascontiguousarray(v.copy())
sha = hashlib.sha1(v).hexdigest()
return sha
def get(self, key):
key = self.hash(key)
return self.cache.get(key, None)
def set(self, key, value):
self.cache[self.hash(key)] = value
class UnetHook(nn.Module):
def __init__(self, lowvram=False) -> None:
super().__init__()
self.lowvram = lowvram
self.model = None
self.sd_ldm = None
self.control_params = None
self.attention_auto_machine = AutoMachine.Read
self.attention_auto_machine_weight = 1.0
self.gn_auto_machine = AutoMachine.Read
self.gn_auto_machine_weight = 1.0
self.current_style_fidelity = 0.0
self.current_uc_indices = None
@staticmethod
def call_vae_using_process(p, x, batch_size=None, mask=None):
vae_cache = getattr(p, 'controlnet_vae_cache', None)
if vae_cache is None:
vae_cache = TorchCache()
setattr(p, 'controlnet_vae_cache', vae_cache)
try:
if x.shape[1] > 3:
x = x[:, 0:3, :, :]
x = x * 2.0 - 1.0
if mask is not None:
x = x * (1.0 - mask)
x = x.type(devices.dtype_vae)
vae_output = vae_cache.get(x)
if vae_output is None:
with devices.autocast():
vae_output = p.sd_model.encode_first_stage(x)
vae_output = p.sd_model.get_first_stage_encoding(vae_output)
if torch.all(torch.isnan(vae_output)).item():
logger.info(f'ControlNet find Nans in the VAE encoding. \n '
f'Now ControlNet will automatically retry.\n '
f'To always start with 32-bit VAE, use --no-half-vae commandline flag.')
devices.dtype_vae = torch.float32
x = x.to(devices.dtype_vae)
p.sd_model.first_stage_model.to(devices.dtype_vae)
vae_output = p.sd_model.encode_first_stage(x)
vae_output = p.sd_model.get_first_stage_encoding(vae_output)
vae_cache.set(x, vae_output)
logger.info(f'ControlNet used {str(devices.dtype_vae)} VAE to encode {vae_output.shape}.')
latent = vae_output
if batch_size is not None and latent.shape[0] != batch_size:
latent = torch.cat([latent.clone() for _ in range(batch_size)], dim=0)
latent = latent.type(devices.dtype_unet)
return latent
except Exception as e:
logger.error(e)
raise ValueError('ControlNet failed to use VAE. Please try to add `--no-half-vae`, `--no-half` and remove `--precision full` in launch cmd.')
def guidance_schedule_handler(self, x):
for param in self.control_params:
current_sampling_percent = (x.sampling_step / x.total_sampling_steps)
param.guidance_stopped = current_sampling_percent < param.start_guidance_percent or current_sampling_percent > param.stop_guidance_percent
if self.model is not None:
self.model.current_sampling_percent = current_sampling_percent
def hook(self, model, sd_ldm, control_params, process):
self.model = model
self.sd_ldm = sd_ldm
self.control_params = control_params
model_is_sdxl = getattr(self.sd_ldm, 'is_sdxl', False)
outer = self
def process_sample(*args, **kwargs):
# ControlNet must know whether a prompt is conditional prompt (positive prompt) or unconditional conditioning prompt (negative prompt).
# You can use the hook.py's `mark_prompt_context` to mark the prompts that will be seen by ControlNet.
# Let us say XXX is a MulticondLearnedConditioning or a ComposableScheduledPromptConditioning or a ScheduledPromptConditioning or a list of these components,
# if XXX is a positive prompt, you should call mark_prompt_context(XXX, positive=True)
# if XXX is a negative prompt, you should call mark_prompt_context(XXX, positive=False)
# After you mark the prompts, the ControlNet will know which prompt is cond/uncond and works as expected.
# After you mark the prompts, the mismatch errors will disappear.
mark_prompt_context(kwargs.get('conditioning', []), positive=True)
mark_prompt_context(kwargs.get('unconditional_conditioning', []), positive=False)
mark_prompt_context(getattr(process, 'hr_c', []), positive=True)
mark_prompt_context(getattr(process, 'hr_uc', []), positive=False)
return process.sample_before_CN_hack(*args, **kwargs)
def forward(self, x, timesteps=None, context=None, y=None, **kwargs):
is_sdxl = y is not None and model_is_sdxl
total_t2i_adapter_embedding = [0.0] * 4
if is_sdxl:
total_controlnet_embedding = [0.0] * 10
else:
total_controlnet_embedding = [0.0] * 13
require_inpaint_hijack = False
is_in_high_res_fix = False
batch_size = int(x.shape[0])
# Handle cond-uncond marker
cond_mark, outer.current_uc_indices, context = unmark_prompt_context(context)
outer.model.cond_mark = cond_mark
# logger.info(str(cond_mark[:, 0, 0, 0].detach().cpu().numpy().tolist()) + ' - ' + str(outer.current_uc_indices))
# Revision
if is_sdxl:
revision_y1280 = 0
for param in outer.control_params:
if param.guidance_stopped:
continue
if param.control_model_type == ControlModelType.ReVision:
if param.vision_hint_count is None:
k = torch.Tensor([int(param.preprocessor['threshold_a'] * 1000)]).to(param.hint_cond).long().clip(0, 999)
param.vision_hint_count = outer.revision_q_sampler.q_sample(param.hint_cond, k)
revision_emb = param.vision_hint_count
if isinstance(revision_emb, torch.Tensor):
revision_y1280 += revision_emb * param.weight
if isinstance(revision_y1280, torch.Tensor):
y[:, :1280] = revision_y1280 * cond_mark[:, :, 0, 0]
if any('ignore_prompt' in param.preprocessor['name'] for param in outer.control_params) \
or (getattr(process, 'prompt', '') == '' and getattr(process, 'negative_prompt', '') == ''):
context = torch.zeros_like(context)
# High-res fix
for param in outer.control_params:
# select which hint_cond to use
if param.used_hint_cond is None:
param.used_hint_cond = param.hint_cond
param.used_hint_cond_latent = None
param.used_hint_inpaint_hijack = None
# has high-res fix
if isinstance(param.hr_hint_cond, torch.Tensor) and x.ndim == 4 and param.hint_cond.ndim == 4 and param.hr_hint_cond.ndim == 4:
_, _, h_lr, w_lr = param.hint_cond.shape
_, _, h_hr, w_hr = param.hr_hint_cond.shape
_, _, h, w = x.shape
h, w = h * 8, w * 8
if abs(h - h_lr) < abs(h - h_hr):
is_in_high_res_fix = False
if param.used_hint_cond is not param.hint_cond:
param.used_hint_cond = param.hint_cond
param.used_hint_cond_latent = None
param.used_hint_inpaint_hijack = None
else:
is_in_high_res_fix = True
if param.used_hint_cond is not param.hr_hint_cond:
param.used_hint_cond = param.hr_hint_cond
param.used_hint_cond_latent = None
param.used_hint_inpaint_hijack = None
no_high_res_control = is_in_high_res_fix and shared.opts.data.get("control_net_no_high_res_fix", False)
# Convert control image to latent
for param in outer.control_params:
if param.used_hint_cond_latent is not None:
continue
if param.control_model_type not in [ControlModelType.AttentionInjection] \
and 'colorfix' not in param.preprocessor['name'] \
and 'inpaint_only' not in param.preprocessor['name']:
continue
param.used_hint_cond_latent = outer.call_vae_using_process(process, param.used_hint_cond, batch_size=batch_size)
# vram
for param in outer.control_params:
if getattr(param.control_model, 'disable_memory_management', False):
continue
if param.control_model is not None:
if outer.lowvram and is_sdxl and hasattr(param.control_model, 'aggressive_lowvram'):
param.control_model.aggressive_lowvram()
elif hasattr(param.control_model, 'fullvram'):
param.control_model.fullvram()
elif hasattr(param.control_model, 'to'):
param.control_model.to(devices.get_device_for("controlnet"))
# handle prompt token control
for param in outer.control_params:
if no_high_res_control:
continue
if param.guidance_stopped:
continue
if param.control_model_type not in [ControlModelType.T2I_StyleAdapter]:
continue
control = param.control_model(x=x, hint=param.used_hint_cond, timesteps=timesteps, context=context)
control = torch.cat([control.clone() for _ in range(batch_size)], dim=0)
control *= param.weight
control *= cond_mark[:, :, :, 0]
context = torch.cat([context, control.clone()], dim=1)
# handle ControlNet / T2I_Adapter
for param in outer.control_params:
if no_high_res_control:
continue
if param.guidance_stopped:
continue
if param.control_model_type not in [ControlModelType.ControlNet, ControlModelType.T2I_Adapter]:
continue
# inpaint model workaround
x_in = x
control_model = param.control_model.control_model
if param.control_model_type == ControlModelType.ControlNet:
if x.shape[1] != control_model.input_blocks[0][0].in_channels and x.shape[1] == 9:
# inpaint_model: 4 data + 4 downscaled image + 1 mask
x_in = x[:, :4, ...]
require_inpaint_hijack = True
assert param.used_hint_cond is not None, f"Controlnet is enabled but no input image is given"
hint = param.used_hint_cond
# ControlNet inpaint protocol
if hint.shape[1] == 4:
c = hint[:, 0:3, :, :]
m = hint[:, 3:4, :, :]
m = (m > 0.5).float()
hint = c * (1 - m) - m
control = param.control_model(x=x_in, hint=hint, timesteps=timesteps, context=context, y=y)
if is_sdxl:
control_scales = [param.weight] * 10
else:
control_scales = [param.weight] * 13
if param.cfg_injection or param.global_average_pooling:
if param.control_model_type == ControlModelType.T2I_Adapter:
control = [torch.cat([c.clone() for _ in range(batch_size)], dim=0) for c in control]
control = [c * cond_mark for c in control]
high_res_fix_forced_soft_injection = False
if is_in_high_res_fix:
if 'canny' in param.preprocessor['name']:
high_res_fix_forced_soft_injection = True
if 'mlsd' in param.preprocessor['name']:
high_res_fix_forced_soft_injection = True
# if high_res_fix_forced_soft_injection:
# logger.info('[ControlNet] Forced soft_injection in high_res_fix in enabled.')
if param.soft_injection or high_res_fix_forced_soft_injection:
# important! use the soft weights with high-res fix can significantly reduce artifacts.
if param.control_model_type == ControlModelType.T2I_Adapter:
control_scales = [param.weight * x for x in (0.25, 0.62, 0.825, 1.0)]
elif param.control_model_type == ControlModelType.ControlNet:
control_scales = [param.weight * (0.825 ** float(12 - i)) for i in range(13)]
if is_sdxl and param.control_model_type == ControlModelType.ControlNet:
control_scales = control_scales[:10]
if param.advanced_weighting is not None:
control_scales = param.advanced_weighting
control = [c * scale for c, scale in zip(control, control_scales)]
if param.global_average_pooling:
control = [torch.mean(c, dim=(2, 3), keepdim=True) for c in control]
for idx, item in enumerate(control):
target = None
if param.control_model_type == ControlModelType.ControlNet:
target = total_controlnet_embedding
if param.control_model_type == ControlModelType.T2I_Adapter:
target = total_t2i_adapter_embedding
if target is not None:
target[idx] = item + target[idx]
# Replace x_t to support inpaint models
for param in outer.control_params:
if not isinstance(param.used_hint_cond, torch.Tensor):
continue
if param.used_hint_cond.shape[1] != 4:
continue
if x.shape[1] != 9:
continue
if param.used_hint_inpaint_hijack is None:
mask_pixel = param.used_hint_cond[:, 3:4, :, :]
image_pixel = param.used_hint_cond[:, 0:3, :, :]
mask_pixel = (mask_pixel > 0.5).to(mask_pixel.dtype)
masked_latent = outer.call_vae_using_process(process, image_pixel, batch_size, mask=mask_pixel)
mask_latent = torch.nn.functional.max_pool2d(mask_pixel, (8, 8))
if mask_latent.shape[0] != batch_size:
mask_latent = torch.cat([mask_latent.clone() for _ in range(batch_size)], dim=0)
param.used_hint_inpaint_hijack = torch.cat([mask_latent, masked_latent], dim=1)
param.used_hint_inpaint_hijack.to(x.dtype).to(x.device)
x = torch.cat([x[:, :4, :, :], param.used_hint_inpaint_hijack], dim=1)
# vram
for param in outer.control_params:
if param.control_model is not None:
if outer.lowvram:
param.control_model.to('cpu')
# A1111 fix for medvram.
if shared.cmd_opts.medvram or (getattr(shared.cmd_opts, 'medvram_sdxl', False) and is_sdxl):
try:
# Trigger the register_forward_pre_hook
outer.sd_ldm.model()
except:
pass
# Clear attention and AdaIn cache
for module in outer.attn_module_list:
module.bank = []
module.style_cfgs = []
for module in outer.gn_module_list:
module.mean_bank = []
module.var_bank = []
module.style_cfgs = []
# Handle attention and AdaIn control
for param in outer.control_params:
if no_high_res_control:
continue
if param.guidance_stopped:
continue
if param.used_hint_cond_latent is None:
continue
if param.control_model_type not in [ControlModelType.AttentionInjection]:
continue
ref_xt = predict_q_sample(outer.sd_ldm, param.used_hint_cond_latent, torch.round(timesteps.float()).long())
# Inpaint Hijack
if x.shape[1] == 9:
ref_xt = torch.cat([
ref_xt,
torch.zeros_like(ref_xt)[:, 0:1, :, :],
param.used_hint_cond_latent
], dim=1)
outer.current_style_fidelity = float(param.preprocessor['threshold_a'])
outer.current_style_fidelity = max(0.0, min(1.0, outer.current_style_fidelity))
if is_sdxl:
# sdxl's attention hacking is highly unstable.
# We have no other methods but to reduce the style_fidelity a bit.
# By default, 0.5 ** 3.0 = 0.125
outer.current_style_fidelity = outer.current_style_fidelity ** 3.0
if param.cfg_injection:
outer.current_style_fidelity = 1.0
elif param.soft_injection or is_in_high_res_fix:
outer.current_style_fidelity = 0.0
control_name = param.preprocessor['name']
if control_name in ['reference_only', 'reference_adain+attn']:
outer.attention_auto_machine = AutoMachine.Write
outer.attention_auto_machine_weight = param.weight
if control_name in ['reference_adain', 'reference_adain+attn']:
outer.gn_auto_machine = AutoMachine.Write
outer.gn_auto_machine_weight = param.weight
if is_sdxl:
outer.original_forward(
x=ref_xt.to(devices.dtype_unet),
timesteps=timesteps.to(devices.dtype_unet),
context=context.to(devices.dtype_unet),
y=y
)
else:
outer.original_forward(
x=ref_xt.to(devices.dtype_unet),
timesteps=timesteps.to(devices.dtype_unet),
context=context.to(devices.dtype_unet)
)
outer.attention_auto_machine = AutoMachine.Read
outer.gn_auto_machine = AutoMachine.Read
# U-Net Encoder
hs = []
with th.no_grad():
t_emb = cond_cast_unet(timestep_embedding(timesteps, self.model_channels, repeat_only=False))
emb = self.time_embed(t_emb)
if is_sdxl:
assert y.shape[0] == x.shape[0]
emb = emb + self.label_emb(y)
h = x
for i, module in enumerate(self.input_blocks):
h = module(h, emb, context)
t2i_injection = [3, 5, 8] if is_sdxl else [2, 5, 8, 11]
if i in t2i_injection:
h = aligned_adding(h, total_t2i_adapter_embedding.pop(0), require_inpaint_hijack)
hs.append(h)
h = self.middle_block(h, emb, context)
# U-Net Middle Block
h = aligned_adding(h, total_controlnet_embedding.pop(), require_inpaint_hijack)
if len(total_t2i_adapter_embedding) > 0 and is_sdxl:
h = aligned_adding(h, total_t2i_adapter_embedding.pop(0), require_inpaint_hijack)
# U-Net Decoder
for i, module in enumerate(self.output_blocks):
h = th.cat([h, aligned_adding(hs.pop(), total_controlnet_embedding.pop(), require_inpaint_hijack)], dim=1)
h = module(h, emb, context)
# U-Net Output
h = h.type(x.dtype)
h = self.out(h)
# Post-processing for color fix
for param in outer.control_params:
if param.used_hint_cond_latent is None:
continue
if 'colorfix' not in param.preprocessor['name']:
continue
k = int(param.preprocessor['threshold_a'])
if is_in_high_res_fix and not no_high_res_control:
k *= 2
# Inpaint hijack
xt = x[:, :4, :, :]
x0_origin = param.used_hint_cond_latent
t = torch.round(timesteps.float()).long()
x0_prd = predict_start_from_noise(outer.sd_ldm, xt, t, h)
x0 = x0_prd - blur(x0_prd, k) + blur(x0_origin, k)
if '+sharp' in param.preprocessor['name']:
detail_weight = float(param.preprocessor['threshold_b']) * 0.01
neg = detail_weight * blur(x0, k) + (1 - detail_weight) * x0
x0 = cond_mark * x0 + (1 - cond_mark) * neg
eps_prd = predict_noise_from_start(outer.sd_ldm, xt, t, x0)
w = max(0.0, min(1.0, float(param.weight)))
h = eps_prd * w + h * (1 - w)
# Post-processing for restore
for param in outer.control_params:
if param.used_hint_cond_latent is None:
continue
if 'inpaint_only' not in param.preprocessor['name']:
continue
if param.used_hint_cond.shape[1] != 4:
continue
# Inpaint hijack
xt = x[:, :4, :, :]
mask = param.used_hint_cond[:, 3:4, :, :]
mask = torch.nn.functional.max_pool2d(mask, (10, 10), stride=(8, 8), padding=1)
x0_origin = param.used_hint_cond_latent
t = torch.round(timesteps.float()).long()
x0_prd = predict_start_from_noise(outer.sd_ldm, xt, t, h)
x0 = x0_prd * mask + x0_origin * (1 - mask)
eps_prd = predict_noise_from_start(outer.sd_ldm, xt, t, x0)
w = max(0.0, min(1.0, float(param.weight)))
h = eps_prd * w + h * (1 - w)
return h
def move_all_control_model_to_cpu():
for param in getattr(outer, 'control_params', []):
if isinstance(param.control_model, torch.nn.Module):
param.control_model.to("cpu")
def forward_webui(*args, **kwargs):
# webui will handle other compoments
try:
if shared.cmd_opts.lowvram:
lowvram.send_everything_to_cpu()
return forward(*args, **kwargs)
except Exception as e:
move_all_control_model_to_cpu()
raise e
finally:
if outer.lowvram:
move_all_control_model_to_cpu()
def hacked_basic_transformer_inner_forward(self, x, context=None):
x_norm1 = self.norm1(x)
self_attn1 = None
if self.disable_self_attn:
# Do not use self-attention
self_attn1 = self.attn1(x_norm1, context=context)
else:
# Use self-attention
self_attention_context = x_norm1
if outer.attention_auto_machine == AutoMachine.Write:
if outer.attention_auto_machine_weight > self.attn_weight:
self.bank.append(self_attention_context.detach().clone())
self.style_cfgs.append(outer.current_style_fidelity)
if outer.attention_auto_machine == AutoMachine.Read:
if len(self.bank) > 0:
style_cfg = sum(self.style_cfgs) / float(len(self.style_cfgs))
self_attn1_uc = self.attn1(x_norm1, context=torch.cat([self_attention_context] + self.bank, dim=1))
self_attn1_c = self_attn1_uc.clone()
if len(outer.current_uc_indices) > 0 and style_cfg > 1e-5:
self_attn1_c[outer.current_uc_indices] = self.attn1(
x_norm1[outer.current_uc_indices],
context=self_attention_context[outer.current_uc_indices])
self_attn1 = style_cfg * self_attn1_c + (1.0 - style_cfg) * self_attn1_uc
self.bank = []
self.style_cfgs = []
if self_attn1 is None:
self_attn1 = self.attn1(x_norm1, context=self_attention_context)
x = self_attn1.to(x.dtype) + x
x = self.attn2(self.norm2(x), context=context) + x
x = self.ff(self.norm3(x)) + x
return x
def hacked_group_norm_forward(self, *args, **kwargs):
eps = 1e-6
x = self.original_forward_cn_hijack(*args, **kwargs)
y = None
if outer.gn_auto_machine == AutoMachine.Write:
if outer.gn_auto_machine_weight > self.gn_weight:
var, mean = torch.var_mean(x, dim=(2, 3), keepdim=True, correction=0)
self.mean_bank.append(mean)
self.var_bank.append(var)
self.style_cfgs.append(outer.current_style_fidelity)
if outer.gn_auto_machine == AutoMachine.Read:
if len(self.mean_bank) > 0 and len(self.var_bank) > 0:
style_cfg = sum(self.style_cfgs) / float(len(self.style_cfgs))
var, mean = torch.var_mean(x, dim=(2, 3), keepdim=True, correction=0)
std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5
mean_acc = sum(self.mean_bank) / float(len(self.mean_bank))
var_acc = sum(self.var_bank) / float(len(self.var_bank))
std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5
y_uc = (((x - mean) / std) * std_acc) + mean_acc
y_c = y_uc.clone()
if len(outer.current_uc_indices) > 0 and style_cfg > 1e-5:
y_c[outer.current_uc_indices] = x.to(y_c.dtype)[outer.current_uc_indices]
y = style_cfg * y_c + (1.0 - style_cfg) * y_uc
self.mean_bank = []
self.var_bank = []
self.style_cfgs = []
if y is None:
y = x
return y.to(x.dtype)
if getattr(process, 'sample_before_CN_hack', None) is None:
process.sample_before_CN_hack = process.sample
process.sample = process_sample
model._original_forward = model.forward
outer.original_forward = model.forward
model.forward = forward_webui.__get__(model, UNetModel)
if model_is_sdxl:
register_schedule(sd_ldm)
outer.revision_q_sampler = AbstractLowScaleModel()
need_attention_hijack = False
for param in outer.control_params:
if param.control_model_type in [ControlModelType.AttentionInjection]:
need_attention_hijack = True
all_modules = torch_dfs(model)
if need_attention_hijack:
attn_modules = [module for module in all_modules if isinstance(module, BasicTransformerBlock) or isinstance(module, BasicTransformerBlockSGM)]
attn_modules = sorted(attn_modules, key=lambda x: - x.norm1.normalized_shape[0])
for i, module in enumerate(attn_modules):
if getattr(module, '_original_inner_forward_cn_hijack', None) is None:
module._original_inner_forward_cn_hijack = module._forward
module._forward = hacked_basic_transformer_inner_forward.__get__(module, BasicTransformerBlock)
module.bank = []
module.style_cfgs = []
module.attn_weight = float(i) / float(len(attn_modules))
gn_modules = [model.middle_block]
model.middle_block.gn_weight = 0
if model_is_sdxl:
input_block_indices = [4, 5, 7, 8]
output_block_indices = [0, 1, 2, 3, 4, 5]
else:
input_block_indices = [4, 5, 7, 8, 10, 11]
output_block_indices = [0, 1, 2, 3, 4, 5, 6, 7]
for w, i in enumerate(input_block_indices):
module = model.input_blocks[i]
module.gn_weight = 1.0 - float(w) / float(len(input_block_indices))
gn_modules.append(module)
for w, i in enumerate(output_block_indices):
module = model.output_blocks[i]
module.gn_weight = float(w) / float(len(output_block_indices))
gn_modules.append(module)
for i, module in enumerate(gn_modules):
if getattr(module, 'original_forward_cn_hijack', None) is None:
module.original_forward_cn_hijack = module.forward
module.forward = hacked_group_norm_forward.__get__(module, torch.nn.Module)
module.mean_bank = []
module.var_bank = []
module.style_cfgs = []
module.gn_weight *= 2
outer.attn_module_list = attn_modules
outer.gn_module_list = gn_modules
else:
for module in enumerate(all_modules):
_original_inner_forward_cn_hijack = getattr(module, '_original_inner_forward_cn_hijack', None)
original_forward_cn_hijack = getattr(module, 'original_forward_cn_hijack', None)
if _original_inner_forward_cn_hijack is not None:
module._forward = _original_inner_forward_cn_hijack
if original_forward_cn_hijack is not None:
module.forward = original_forward_cn_hijack
outer.attn_module_list = []
outer.gn_module_list = []
scripts.script_callbacks.on_cfg_denoiser(self.guidance_schedule_handler)
def restore(self):
scripts.script_callbacks.remove_callbacks_for_function(self.guidance_schedule_handler)
self.control_params = None
if self.model is not None:
if hasattr(self.model, "_original_forward"):
self.model.forward = self.model._original_forward
del self.model._original_forward