Spaces:
Paused
Paused
import torch | |
import torch.nn as nn | |
from modules import devices | |
try: | |
from sgm.modules.diffusionmodules.openaimodel import conv_nd, linear, zero_module, timestep_embedding, \ | |
TimestepEmbedSequential, ResBlock, Downsample, SpatialTransformer, exists | |
using_sgm = True | |
except: | |
from ldm.modules.diffusionmodules.openaimodel import conv_nd, linear, zero_module, timestep_embedding, \ | |
TimestepEmbedSequential, ResBlock, Downsample, SpatialTransformer, exists | |
using_sgm = False | |
class PlugableControlModel(nn.Module): | |
def __init__(self, config, state_dict=None): | |
super().__init__() | |
self.config = config | |
self.control_model = ControlNet(**self.config).cpu() | |
if state_dict is not None: | |
self.control_model.load_state_dict(state_dict, strict=False) | |
self.gpu_component = None | |
self.is_control_lora = False | |
def reset(self): | |
pass | |
def forward(self, *args, **kwargs): | |
return self.control_model(*args, **kwargs) | |
def aggressive_lowvram(self): | |
self.to('cpu') | |
def send_me_to_gpu(module, _): | |
if self.gpu_component == module: | |
return | |
if self.gpu_component is not None: | |
self.gpu_component.to('cpu') | |
module.to(devices.get_device_for("controlnet")) | |
self.gpu_component = module | |
self.control_model.time_embed.register_forward_pre_hook(send_me_to_gpu) | |
self.control_model.input_hint_block.register_forward_pre_hook(send_me_to_gpu) | |
self.control_model.label_emb.register_forward_pre_hook(send_me_to_gpu) | |
for m in self.control_model.input_blocks: | |
m.register_forward_pre_hook(send_me_to_gpu) | |
for m in self.control_model.zero_convs: | |
m.register_forward_pre_hook(send_me_to_gpu) | |
self.control_model.middle_block.register_forward_pre_hook(send_me_to_gpu) | |
self.control_model.middle_block_out.register_forward_pre_hook(send_me_to_gpu) | |
return | |
def fullvram(self): | |
self.to(devices.get_device_for("controlnet")) | |
return | |
class ControlNet(nn.Module): | |
def __init__( | |
self, | |
in_channels, | |
model_channels, | |
hint_channels, | |
num_res_blocks, | |
attention_resolutions, | |
dropout=0, | |
channel_mult=(1, 2, 4, 8), | |
conv_resample=True, | |
dims=2, | |
num_classes=None, | |
use_checkpoint=False, | |
use_fp16=True, | |
num_heads=-1, | |
num_head_channels=-1, | |
num_heads_upsample=-1, | |
use_scale_shift_norm=False, | |
resblock_updown=False, | |
use_spatial_transformer=True, | |
transformer_depth=1, | |
context_dim=None, | |
n_embed=None, | |
legacy=False, | |
disable_self_attentions=None, | |
num_attention_blocks=None, | |
disable_middle_self_attn=False, | |
use_linear_in_transformer=False, | |
adm_in_channels=None, | |
transformer_depth_middle=None, | |
device=None, | |
global_average_pooling=False, | |
): | |
super().__init__() | |
self.global_average_pooling = global_average_pooling | |
if num_heads_upsample == -1: | |
num_heads_upsample = num_heads | |
self.dims = dims | |
self.in_channels = in_channels | |
self.model_channels = model_channels | |
if isinstance(transformer_depth, int): | |
transformer_depth = len(channel_mult) * [transformer_depth] | |
if transformer_depth_middle is None: | |
transformer_depth_middle = transformer_depth[-1] | |
if isinstance(num_res_blocks, int): | |
self.num_res_blocks = len(channel_mult) * [num_res_blocks] | |
else: | |
self.num_res_blocks = num_res_blocks | |
self.attention_resolutions = attention_resolutions | |
self.dropout = dropout | |
self.channel_mult = channel_mult | |
self.conv_resample = conv_resample | |
self.num_classes = num_classes | |
self.use_checkpoint = use_checkpoint | |
self.dtype = torch.float16 if use_fp16 else torch.float32 | |
self.num_heads = num_heads | |
self.num_head_channels = num_head_channels | |
self.num_heads_upsample = num_heads_upsample | |
self.predict_codebook_ids = n_embed is not None | |
time_embed_dim = model_channels * 4 | |
self.time_embed = nn.Sequential( | |
linear(model_channels, time_embed_dim, dtype=self.dtype, device=device), | |
nn.SiLU(), | |
linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device), | |
) | |
if self.num_classes is not None: | |
if isinstance(self.num_classes, int): | |
self.label_emb = nn.Embedding(num_classes, time_embed_dim) | |
elif self.num_classes == "continuous": | |
print("setting up linear c_adm embedding layer") | |
self.label_emb = nn.Linear(1, time_embed_dim) | |
elif self.num_classes == "sequential": | |
assert adm_in_channels is not None | |
self.label_emb = nn.Sequential( | |
nn.Sequential( | |
linear(adm_in_channels, time_embed_dim, dtype=self.dtype, device=device), | |
nn.SiLU(), | |
linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device), | |
) | |
) | |
else: | |
raise ValueError() | |
self.input_blocks = nn.ModuleList( | |
[ | |
TimestepEmbedSequential( | |
conv_nd(dims, in_channels, model_channels, 3, padding=1, dtype=self.dtype, device=device) | |
) | |
] | |
) | |
self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels)]) | |
self.input_hint_block = TimestepEmbedSequential( | |
conv_nd(dims, hint_channels, 16, 3, padding=1), | |
nn.SiLU(), | |
conv_nd(dims, 16, 16, 3, padding=1), | |
nn.SiLU(), | |
conv_nd(dims, 16, 32, 3, padding=1, stride=2), | |
nn.SiLU(), | |
conv_nd(dims, 32, 32, 3, padding=1), | |
nn.SiLU(), | |
conv_nd(dims, 32, 96, 3, padding=1, stride=2), | |
nn.SiLU(), | |
conv_nd(dims, 96, 96, 3, padding=1), | |
nn.SiLU(), | |
conv_nd(dims, 96, 256, 3, padding=1, stride=2), | |
nn.SiLU(), | |
zero_module(conv_nd(dims, 256, model_channels, 3, padding=1)) | |
) | |
self._feature_size = model_channels | |
input_block_chans = [model_channels] | |
ch = model_channels | |
ds = 1 | |
for level, mult in enumerate(channel_mult): | |
for nr in range(self.num_res_blocks[level]): | |
layers = [ | |
ResBlock( | |
ch, | |
time_embed_dim, | |
dropout, | |
out_channels=mult * model_channels, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm | |
) | |
] | |
ch = mult * model_channels | |
if ds in attention_resolutions: | |
if num_head_channels == -1: | |
dim_head = ch // num_heads | |
else: | |
num_heads = ch // num_head_channels | |
dim_head = num_head_channels | |
if legacy: | |
#num_heads = 1 | |
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels | |
if exists(disable_self_attentions): | |
disabled_sa = disable_self_attentions[level] | |
else: | |
disabled_sa = False | |
if not exists(num_attention_blocks) or nr < num_attention_blocks[level]: | |
layers.append( | |
SpatialTransformer( | |
ch, num_heads, dim_head, depth=transformer_depth[level], context_dim=context_dim, | |
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer, | |
use_checkpoint=use_checkpoint | |
) | |
) | |
self.input_blocks.append(TimestepEmbedSequential(*layers)) | |
self.zero_convs.append(self.make_zero_conv(ch)) | |
self._feature_size += ch | |
input_block_chans.append(ch) | |
if level != len(channel_mult) - 1: | |
out_ch = ch | |
self.input_blocks.append( | |
TimestepEmbedSequential( | |
ResBlock( | |
ch, | |
time_embed_dim, | |
dropout, | |
out_channels=out_ch, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
down=True | |
) | |
if resblock_updown | |
else Downsample( | |
ch, conv_resample, dims=dims, out_channels=out_ch | |
) | |
) | |
) | |
ch = out_ch | |
input_block_chans.append(ch) | |
self.zero_convs.append(self.make_zero_conv(ch)) | |
ds *= 2 | |
self._feature_size += ch | |
if num_head_channels == -1: | |
dim_head = ch // num_heads | |
else: | |
num_heads = ch // num_head_channels | |
dim_head = num_head_channels | |
if legacy: | |
#num_heads = 1 | |
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels | |
self.middle_block = TimestepEmbedSequential( | |
ResBlock( | |
ch, | |
time_embed_dim, | |
dropout, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm | |
), | |
SpatialTransformer( # always uses a self-attn | |
ch, num_heads, dim_head, depth=transformer_depth_middle, context_dim=context_dim, | |
disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer, | |
use_checkpoint=use_checkpoint | |
), | |
ResBlock( | |
ch, | |
time_embed_dim, | |
dropout, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm | |
), | |
) | |
self.middle_block_out = self.make_zero_conv(ch) | |
self._feature_size += ch | |
def make_zero_conv(self, channels): | |
return TimestepEmbedSequential(zero_module(conv_nd(self.dims, channels, channels, 1, padding=0))) | |
def forward(self, x, hint, timesteps, context, y=None, **kwargs): | |
original_type = x.dtype | |
x = x.to(self.dtype) | |
hint = hint.to(self.dtype) | |
timesteps = timesteps.to(self.dtype) | |
context = context.to(self.dtype) | |
if y is not None: | |
y = y.to(self.dtype) | |
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(self.dtype) | |
emb = self.time_embed(t_emb) | |
guided_hint = self.input_hint_block(hint, emb, context) | |
outs = [] | |
if self.num_classes is not None: | |
assert y.shape[0] == x.shape[0] | |
emb = emb + self.label_emb(y) | |
h = x | |
for module, zero_conv in zip(self.input_blocks, self.zero_convs): | |
if guided_hint is not None: | |
h = module(h, emb, context) | |
h += guided_hint | |
guided_hint = None | |
else: | |
h = module(h, emb, context) | |
outs.append(zero_conv(h, emb, context)) | |
h = self.middle_block(h, emb, context) | |
outs.append(self.middle_block_out(h, emb, context)) | |
outs = [o.to(original_type) for o in outs] | |
return outs | |