Spaces:
Paused
Paused
sd-automatic111
/
extensions
/sd-webui-controlnet
/annotator
/mmpkg
/mmcv
/runner
/hooks
/evaluation.py
# Copyright (c) OpenMMLab. All rights reserved. | |
import os.path as osp | |
import warnings | |
from math import inf | |
import torch.distributed as dist | |
from torch.nn.modules.batchnorm import _BatchNorm | |
from torch.utils.data import DataLoader | |
from annotator.mmpkg.mmcv.fileio import FileClient | |
from annotator.mmpkg.mmcv.utils import is_seq_of | |
from .hook import Hook | |
from .logger import LoggerHook | |
class EvalHook(Hook): | |
"""Non-Distributed evaluation hook. | |
This hook will regularly perform evaluation in a given interval when | |
performing in non-distributed environment. | |
Args: | |
dataloader (DataLoader): A PyTorch dataloader, whose dataset has | |
implemented ``evaluate`` function. | |
start (int | None, optional): Evaluation starting epoch. It enables | |
evaluation before the training starts if ``start`` <= the resuming | |
epoch. If None, whether to evaluate is merely decided by | |
``interval``. Default: None. | |
interval (int): Evaluation interval. Default: 1. | |
by_epoch (bool): Determine perform evaluation by epoch or by iteration. | |
If set to True, it will perform by epoch. Otherwise, by iteration. | |
Default: True. | |
save_best (str, optional): If a metric is specified, it would measure | |
the best checkpoint during evaluation. The information about best | |
checkpoint would be saved in ``runner.meta['hook_msgs']`` to keep | |
best score value and best checkpoint path, which will be also | |
loaded when resume checkpoint. Options are the evaluation metrics | |
on the test dataset. e.g., ``bbox_mAP``, ``segm_mAP`` for bbox | |
detection and instance segmentation. ``AR@100`` for proposal | |
recall. If ``save_best`` is ``auto``, the first key of the returned | |
``OrderedDict`` result will be used. Default: None. | |
rule (str | None, optional): Comparison rule for best score. If set to | |
None, it will infer a reasonable rule. Keys such as 'acc', 'top' | |
.etc will be inferred by 'greater' rule. Keys contain 'loss' will | |
be inferred by 'less' rule. Options are 'greater', 'less', None. | |
Default: None. | |
test_fn (callable, optional): test a model with samples from a | |
dataloader, and return the test results. If ``None``, the default | |
test function ``mmcv.engine.single_gpu_test`` will be used. | |
(default: ``None``) | |
greater_keys (List[str] | None, optional): Metric keys that will be | |
inferred by 'greater' comparison rule. If ``None``, | |
_default_greater_keys will be used. (default: ``None``) | |
less_keys (List[str] | None, optional): Metric keys that will be | |
inferred by 'less' comparison rule. If ``None``, _default_less_keys | |
will be used. (default: ``None``) | |
out_dir (str, optional): The root directory to save checkpoints. If not | |
specified, `runner.work_dir` will be used by default. If specified, | |
the `out_dir` will be the concatenation of `out_dir` and the last | |
level directory of `runner.work_dir`. | |
`New in version 1.3.16.` | |
file_client_args (dict): Arguments to instantiate a FileClient. | |
See :class:`mmcv.fileio.FileClient` for details. Default: None. | |
`New in version 1.3.16.` | |
**eval_kwargs: Evaluation arguments fed into the evaluate function of | |
the dataset. | |
Notes: | |
If new arguments are added for EvalHook, tools/test.py, | |
tools/eval_metric.py may be affected. | |
""" | |
# Since the key for determine greater or less is related to the downstream | |
# tasks, downstream repos may need to overwrite the following inner | |
# variable accordingly. | |
rule_map = {'greater': lambda x, y: x > y, 'less': lambda x, y: x < y} | |
init_value_map = {'greater': -inf, 'less': inf} | |
_default_greater_keys = [ | |
'acc', 'top', 'AR@', 'auc', 'precision', 'mAP', 'mDice', 'mIoU', | |
'mAcc', 'aAcc' | |
] | |
_default_less_keys = ['loss'] | |
def __init__(self, | |
dataloader, | |
start=None, | |
interval=1, | |
by_epoch=True, | |
save_best=None, | |
rule=None, | |
test_fn=None, | |
greater_keys=None, | |
less_keys=None, | |
out_dir=None, | |
file_client_args=None, | |
**eval_kwargs): | |
if not isinstance(dataloader, DataLoader): | |
raise TypeError(f'dataloader must be a pytorch DataLoader, ' | |
f'but got {type(dataloader)}') | |
if interval <= 0: | |
raise ValueError(f'interval must be a positive number, ' | |
f'but got {interval}') | |
assert isinstance(by_epoch, bool), '``by_epoch`` should be a boolean' | |
if start is not None and start < 0: | |
raise ValueError(f'The evaluation start epoch {start} is smaller ' | |
f'than 0') | |
self.dataloader = dataloader | |
self.interval = interval | |
self.start = start | |
self.by_epoch = by_epoch | |
assert isinstance(save_best, str) or save_best is None, \ | |
'""save_best"" should be a str or None ' \ | |
f'rather than {type(save_best)}' | |
self.save_best = save_best | |
self.eval_kwargs = eval_kwargs | |
self.initial_flag = True | |
if test_fn is None: | |
from annotator.mmpkg.mmcv.engine import single_gpu_test | |
self.test_fn = single_gpu_test | |
else: | |
self.test_fn = test_fn | |
if greater_keys is None: | |
self.greater_keys = self._default_greater_keys | |
else: | |
if not isinstance(greater_keys, (list, tuple)): | |
greater_keys = (greater_keys, ) | |
assert is_seq_of(greater_keys, str) | |
self.greater_keys = greater_keys | |
if less_keys is None: | |
self.less_keys = self._default_less_keys | |
else: | |
if not isinstance(less_keys, (list, tuple)): | |
less_keys = (less_keys, ) | |
assert is_seq_of(less_keys, str) | |
self.less_keys = less_keys | |
if self.save_best is not None: | |
self.best_ckpt_path = None | |
self._init_rule(rule, self.save_best) | |
self.out_dir = out_dir | |
self.file_client_args = file_client_args | |
def _init_rule(self, rule, key_indicator): | |
"""Initialize rule, key_indicator, comparison_func, and best score. | |
Here is the rule to determine which rule is used for key indicator | |
when the rule is not specific (note that the key indicator matching | |
is case-insensitive): | |
1. If the key indicator is in ``self.greater_keys``, the rule will be | |
specified as 'greater'. | |
2. Or if the key indicator is in ``self.less_keys``, the rule will be | |
specified as 'less'. | |
3. Or if the key indicator is equal to the substring in any one item | |
in ``self.greater_keys``, the rule will be specified as 'greater'. | |
4. Or if the key indicator is equal to the substring in any one item | |
in ``self.less_keys``, the rule will be specified as 'less'. | |
Args: | |
rule (str | None): Comparison rule for best score. | |
key_indicator (str | None): Key indicator to determine the | |
comparison rule. | |
""" | |
if rule not in self.rule_map and rule is not None: | |
raise KeyError(f'rule must be greater, less or None, ' | |
f'but got {rule}.') | |
if rule is None: | |
if key_indicator != 'auto': | |
# `_lc` here means we use the lower case of keys for | |
# case-insensitive matching | |
key_indicator_lc = key_indicator.lower() | |
greater_keys = [key.lower() for key in self.greater_keys] | |
less_keys = [key.lower() for key in self.less_keys] | |
if key_indicator_lc in greater_keys: | |
rule = 'greater' | |
elif key_indicator_lc in less_keys: | |
rule = 'less' | |
elif any(key in key_indicator_lc for key in greater_keys): | |
rule = 'greater' | |
elif any(key in key_indicator_lc for key in less_keys): | |
rule = 'less' | |
else: | |
raise ValueError(f'Cannot infer the rule for key ' | |
f'{key_indicator}, thus a specific rule ' | |
f'must be specified.') | |
self.rule = rule | |
self.key_indicator = key_indicator | |
if self.rule is not None: | |
self.compare_func = self.rule_map[self.rule] | |
def before_run(self, runner): | |
if not self.out_dir: | |
self.out_dir = runner.work_dir | |
self.file_client = FileClient.infer_client(self.file_client_args, | |
self.out_dir) | |
# if `self.out_dir` is not equal to `runner.work_dir`, it means that | |
# `self.out_dir` is set so the final `self.out_dir` is the | |
# concatenation of `self.out_dir` and the last level directory of | |
# `runner.work_dir` | |
if self.out_dir != runner.work_dir: | |
basename = osp.basename(runner.work_dir.rstrip(osp.sep)) | |
self.out_dir = self.file_client.join_path(self.out_dir, basename) | |
runner.logger.info( | |
(f'The best checkpoint will be saved to {self.out_dir} by ' | |
f'{self.file_client.name}')) | |
if self.save_best is not None: | |
if runner.meta is None: | |
warnings.warn('runner.meta is None. Creating an empty one.') | |
runner.meta = dict() | |
runner.meta.setdefault('hook_msgs', dict()) | |
self.best_ckpt_path = runner.meta['hook_msgs'].get( | |
'best_ckpt', None) | |
def before_train_iter(self, runner): | |
"""Evaluate the model only at the start of training by iteration.""" | |
if self.by_epoch or not self.initial_flag: | |
return | |
if self.start is not None and runner.iter >= self.start: | |
self.after_train_iter(runner) | |
self.initial_flag = False | |
def before_train_epoch(self, runner): | |
"""Evaluate the model only at the start of training by epoch.""" | |
if not (self.by_epoch and self.initial_flag): | |
return | |
if self.start is not None and runner.epoch >= self.start: | |
self.after_train_epoch(runner) | |
self.initial_flag = False | |
def after_train_iter(self, runner): | |
"""Called after every training iter to evaluate the results.""" | |
if not self.by_epoch and self._should_evaluate(runner): | |
# Because the priority of EvalHook is higher than LoggerHook, the | |
# training log and the evaluating log are mixed. Therefore, | |
# we need to dump the training log and clear it before evaluating | |
# log is generated. In addition, this problem will only appear in | |
# `IterBasedRunner` whose `self.by_epoch` is False, because | |
# `EpochBasedRunner` whose `self.by_epoch` is True calls | |
# `_do_evaluate` in `after_train_epoch` stage, and at this stage | |
# the training log has been printed, so it will not cause any | |
# problem. more details at | |
# https://github.com/open-mmlab/mmsegmentation/issues/694 | |
for hook in runner._hooks: | |
if isinstance(hook, LoggerHook): | |
hook.after_train_iter(runner) | |
runner.log_buffer.clear() | |
self._do_evaluate(runner) | |
def after_train_epoch(self, runner): | |
"""Called after every training epoch to evaluate the results.""" | |
if self.by_epoch and self._should_evaluate(runner): | |
self._do_evaluate(runner) | |
def _do_evaluate(self, runner): | |
"""perform evaluation and save ckpt.""" | |
results = self.test_fn(runner.model, self.dataloader) | |
runner.log_buffer.output['eval_iter_num'] = len(self.dataloader) | |
key_score = self.evaluate(runner, results) | |
# the key_score may be `None` so it needs to skip the action to save | |
# the best checkpoint | |
if self.save_best and key_score: | |
self._save_ckpt(runner, key_score) | |
def _should_evaluate(self, runner): | |
"""Judge whether to perform evaluation. | |
Here is the rule to judge whether to perform evaluation: | |
1. It will not perform evaluation during the epoch/iteration interval, | |
which is determined by ``self.interval``. | |
2. It will not perform evaluation if the start time is larger than | |
current time. | |
3. It will not perform evaluation when current time is larger than | |
the start time but during epoch/iteration interval. | |
Returns: | |
bool: The flag indicating whether to perform evaluation. | |
""" | |
if self.by_epoch: | |
current = runner.epoch | |
check_time = self.every_n_epochs | |
else: | |
current = runner.iter | |
check_time = self.every_n_iters | |
if self.start is None: | |
if not check_time(runner, self.interval): | |
# No evaluation during the interval. | |
return False | |
elif (current + 1) < self.start: | |
# No evaluation if start is larger than the current time. | |
return False | |
else: | |
# Evaluation only at epochs/iters 3, 5, 7... | |
# if start==3 and interval==2 | |
if (current + 1 - self.start) % self.interval: | |
return False | |
return True | |
def _save_ckpt(self, runner, key_score): | |
"""Save the best checkpoint. | |
It will compare the score according to the compare function, write | |
related information (best score, best checkpoint path) and save the | |
best checkpoint into ``work_dir``. | |
""" | |
if self.by_epoch: | |
current = f'epoch_{runner.epoch + 1}' | |
cur_type, cur_time = 'epoch', runner.epoch + 1 | |
else: | |
current = f'iter_{runner.iter + 1}' | |
cur_type, cur_time = 'iter', runner.iter + 1 | |
best_score = runner.meta['hook_msgs'].get( | |
'best_score', self.init_value_map[self.rule]) | |
if self.compare_func(key_score, best_score): | |
best_score = key_score | |
runner.meta['hook_msgs']['best_score'] = best_score | |
if self.best_ckpt_path and self.file_client.isfile( | |
self.best_ckpt_path): | |
self.file_client.remove(self.best_ckpt_path) | |
runner.logger.info( | |
(f'The previous best checkpoint {self.best_ckpt_path} was ' | |
'removed')) | |
best_ckpt_name = f'best_{self.key_indicator}_{current}.pth' | |
self.best_ckpt_path = self.file_client.join_path( | |
self.out_dir, best_ckpt_name) | |
runner.meta['hook_msgs']['best_ckpt'] = self.best_ckpt_path | |
runner.save_checkpoint( | |
self.out_dir, best_ckpt_name, create_symlink=False) | |
runner.logger.info( | |
f'Now best checkpoint is saved as {best_ckpt_name}.') | |
runner.logger.info( | |
f'Best {self.key_indicator} is {best_score:0.4f} ' | |
f'at {cur_time} {cur_type}.') | |
def evaluate(self, runner, results): | |
"""Evaluate the results. | |
Args: | |
runner (:obj:`mmcv.Runner`): The underlined training runner. | |
results (list): Output results. | |
""" | |
eval_res = self.dataloader.dataset.evaluate( | |
results, logger=runner.logger, **self.eval_kwargs) | |
for name, val in eval_res.items(): | |
runner.log_buffer.output[name] = val | |
runner.log_buffer.ready = True | |
if self.save_best is not None: | |
# If the performance of model is pool, the `eval_res` may be an | |
# empty dict and it will raise exception when `self.save_best` is | |
# not None. More details at | |
# https://github.com/open-mmlab/mmdetection/issues/6265. | |
if not eval_res: | |
warnings.warn( | |
'Since `eval_res` is an empty dict, the behavior to save ' | |
'the best checkpoint will be skipped in this evaluation.') | |
return None | |
if self.key_indicator == 'auto': | |
# infer from eval_results | |
self._init_rule(self.rule, list(eval_res.keys())[0]) | |
return eval_res[self.key_indicator] | |
return None | |
class DistEvalHook(EvalHook): | |
"""Distributed evaluation hook. | |
This hook will regularly perform evaluation in a given interval when | |
performing in distributed environment. | |
Args: | |
dataloader (DataLoader): A PyTorch dataloader, whose dataset has | |
implemented ``evaluate`` function. | |
start (int | None, optional): Evaluation starting epoch. It enables | |
evaluation before the training starts if ``start`` <= the resuming | |
epoch. If None, whether to evaluate is merely decided by | |
``interval``. Default: None. | |
interval (int): Evaluation interval. Default: 1. | |
by_epoch (bool): Determine perform evaluation by epoch or by iteration. | |
If set to True, it will perform by epoch. Otherwise, by iteration. | |
default: True. | |
save_best (str, optional): If a metric is specified, it would measure | |
the best checkpoint during evaluation. The information about best | |
checkpoint would be saved in ``runner.meta['hook_msgs']`` to keep | |
best score value and best checkpoint path, which will be also | |
loaded when resume checkpoint. Options are the evaluation metrics | |
on the test dataset. e.g., ``bbox_mAP``, ``segm_mAP`` for bbox | |
detection and instance segmentation. ``AR@100`` for proposal | |
recall. If ``save_best`` is ``auto``, the first key of the returned | |
``OrderedDict`` result will be used. Default: None. | |
rule (str | None, optional): Comparison rule for best score. If set to | |
None, it will infer a reasonable rule. Keys such as 'acc', 'top' | |
.etc will be inferred by 'greater' rule. Keys contain 'loss' will | |
be inferred by 'less' rule. Options are 'greater', 'less', None. | |
Default: None. | |
test_fn (callable, optional): test a model with samples from a | |
dataloader in a multi-gpu manner, and return the test results. If | |
``None``, the default test function ``mmcv.engine.multi_gpu_test`` | |
will be used. (default: ``None``) | |
tmpdir (str | None): Temporary directory to save the results of all | |
processes. Default: None. | |
gpu_collect (bool): Whether to use gpu or cpu to collect results. | |
Default: False. | |
broadcast_bn_buffer (bool): Whether to broadcast the | |
buffer(running_mean and running_var) of rank 0 to other rank | |
before evaluation. Default: True. | |
out_dir (str, optional): The root directory to save checkpoints. If not | |
specified, `runner.work_dir` will be used by default. If specified, | |
the `out_dir` will be the concatenation of `out_dir` and the last | |
level directory of `runner.work_dir`. | |
file_client_args (dict): Arguments to instantiate a FileClient. | |
See :class:`mmcv.fileio.FileClient` for details. Default: None. | |
**eval_kwargs: Evaluation arguments fed into the evaluate function of | |
the dataset. | |
""" | |
def __init__(self, | |
dataloader, | |
start=None, | |
interval=1, | |
by_epoch=True, | |
save_best=None, | |
rule=None, | |
test_fn=None, | |
greater_keys=None, | |
less_keys=None, | |
broadcast_bn_buffer=True, | |
tmpdir=None, | |
gpu_collect=False, | |
out_dir=None, | |
file_client_args=None, | |
**eval_kwargs): | |
if test_fn is None: | |
from annotator.mmpkg.mmcv.engine import multi_gpu_test | |
test_fn = multi_gpu_test | |
super().__init__( | |
dataloader, | |
start=start, | |
interval=interval, | |
by_epoch=by_epoch, | |
save_best=save_best, | |
rule=rule, | |
test_fn=test_fn, | |
greater_keys=greater_keys, | |
less_keys=less_keys, | |
out_dir=out_dir, | |
file_client_args=file_client_args, | |
**eval_kwargs) | |
self.broadcast_bn_buffer = broadcast_bn_buffer | |
self.tmpdir = tmpdir | |
self.gpu_collect = gpu_collect | |
def _do_evaluate(self, runner): | |
"""perform evaluation and save ckpt.""" | |
# Synchronization of BatchNorm's buffer (running_mean | |
# and running_var) is not supported in the DDP of pytorch, | |
# which may cause the inconsistent performance of models in | |
# different ranks, so we broadcast BatchNorm's buffers | |
# of rank 0 to other ranks to avoid this. | |
if self.broadcast_bn_buffer: | |
model = runner.model | |
for name, module in model.named_modules(): | |
if isinstance(module, | |
_BatchNorm) and module.track_running_stats: | |
dist.broadcast(module.running_var, 0) | |
dist.broadcast(module.running_mean, 0) | |
tmpdir = self.tmpdir | |
if tmpdir is None: | |
tmpdir = osp.join(runner.work_dir, '.eval_hook') | |
results = self.test_fn( | |
runner.model, | |
self.dataloader, | |
tmpdir=tmpdir, | |
gpu_collect=self.gpu_collect) | |
if runner.rank == 0: | |
print('\n') | |
runner.log_buffer.output['eval_iter_num'] = len(self.dataloader) | |
key_score = self.evaluate(runner, results) | |
# the key_score may be `None` so it needs to skip the action to | |
# save the best checkpoint | |
if self.save_best and key_score: | |
self._save_ckpt(runner, key_score) | |