Spaces:
Paused
Paused
sd-automatic111
/
extensions-builtin
/sd-webui-controlnet
/annotator
/mmpkg
/mmseg
/models
/backbones
/vit.py
"""Modified from https://github.com/rwightman/pytorch-image- | |
models/blob/master/timm/models/vision_transformer.py.""" | |
import math | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch.utils.checkpoint as cp | |
from annotator.mmpkg.mmcv.cnn import (Conv2d, Linear, build_activation_layer, build_norm_layer, | |
constant_init, kaiming_init, normal_init) | |
from annotator.mmpkg.mmcv.runner import _load_checkpoint | |
from annotator.mmpkg.mmcv.utils.parrots_wrapper import _BatchNorm | |
from annotator.mmpkg.mmseg.utils import get_root_logger | |
from ..builder import BACKBONES | |
from ..utils import DropPath, trunc_normal_ | |
class Mlp(nn.Module): | |
"""MLP layer for Encoder block. | |
Args: | |
in_features(int): Input dimension for the first fully | |
connected layer. | |
hidden_features(int): Output dimension for the first fully | |
connected layer. | |
out_features(int): Output dementsion for the second fully | |
connected layer. | |
act_cfg(dict): Config dict for activation layer. | |
Default: dict(type='GELU'). | |
drop(float): Drop rate for the dropout layer. Dropout rate has | |
to be between 0 and 1. Default: 0. | |
""" | |
def __init__(self, | |
in_features, | |
hidden_features=None, | |
out_features=None, | |
act_cfg=dict(type='GELU'), | |
drop=0.): | |
super(Mlp, self).__init__() | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features | |
self.fc1 = Linear(in_features, hidden_features) | |
self.act = build_activation_layer(act_cfg) | |
self.fc2 = Linear(hidden_features, out_features) | |
self.drop = nn.Dropout(drop) | |
def forward(self, x): | |
x = self.fc1(x) | |
x = self.act(x) | |
x = self.drop(x) | |
x = self.fc2(x) | |
x = self.drop(x) | |
return x | |
class Attention(nn.Module): | |
"""Attention layer for Encoder block. | |
Args: | |
dim (int): Dimension for the input vector. | |
num_heads (int): Number of parallel attention heads. | |
qkv_bias (bool): Enable bias for qkv if True. Default: False. | |
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. | |
attn_drop (float): Drop rate for attention output weights. | |
Default: 0. | |
proj_drop (float): Drop rate for output weights. Default: 0. | |
""" | |
def __init__(self, | |
dim, | |
num_heads=8, | |
qkv_bias=False, | |
qk_scale=None, | |
attn_drop=0., | |
proj_drop=0.): | |
super(Attention, self).__init__() | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.scale = qk_scale or head_dim**-0.5 | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
def forward(self, x): | |
b, n, c = x.shape | |
qkv = self.qkv(x).reshape(b, n, 3, self.num_heads, | |
c // self.num_heads).permute(2, 0, 3, 1, 4) | |
q, k, v = qkv[0], qkv[1], qkv[2] | |
attn = (q @ k.transpose(-2, -1)) * self.scale | |
attn = attn.softmax(dim=-1) | |
attn = self.attn_drop(attn) | |
x = (attn @ v).transpose(1, 2).reshape(b, n, c) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class Block(nn.Module): | |
"""Implements encoder block with residual connection. | |
Args: | |
dim (int): The feature dimension. | |
num_heads (int): Number of parallel attention heads. | |
mlp_ratio (int): Ratio of mlp hidden dim to embedding dim. | |
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. | |
drop (float): Drop rate for mlp output weights. Default: 0. | |
attn_drop (float): Drop rate for attention output weights. | |
Default: 0. | |
proj_drop (float): Drop rate for attn layer output weights. | |
Default: 0. | |
drop_path (float): Drop rate for paths of model. | |
Default: 0. | |
act_cfg (dict): Config dict for activation layer. | |
Default: dict(type='GELU'). | |
norm_cfg (dict): Config dict for normalization layer. | |
Default: dict(type='LN', requires_grad=True). | |
with_cp (bool): Use checkpoint or not. Using checkpoint will save some | |
memory while slowing down the training speed. Default: False. | |
""" | |
def __init__(self, | |
dim, | |
num_heads, | |
mlp_ratio=4, | |
qkv_bias=False, | |
qk_scale=None, | |
drop=0., | |
attn_drop=0., | |
proj_drop=0., | |
drop_path=0., | |
act_cfg=dict(type='GELU'), | |
norm_cfg=dict(type='LN', eps=1e-6), | |
with_cp=False): | |
super(Block, self).__init__() | |
self.with_cp = with_cp | |
_, self.norm1 = build_norm_layer(norm_cfg, dim) | |
self.attn = Attention(dim, num_heads, qkv_bias, qk_scale, attn_drop, | |
proj_drop) | |
self.drop_path = DropPath( | |
drop_path) if drop_path > 0. else nn.Identity() | |
_, self.norm2 = build_norm_layer(norm_cfg, dim) | |
mlp_hidden_dim = int(dim * mlp_ratio) | |
self.mlp = Mlp( | |
in_features=dim, | |
hidden_features=mlp_hidden_dim, | |
act_cfg=act_cfg, | |
drop=drop) | |
def forward(self, x): | |
def _inner_forward(x): | |
out = x + self.drop_path(self.attn(self.norm1(x))) | |
out = out + self.drop_path(self.mlp(self.norm2(out))) | |
return out | |
if self.with_cp and x.requires_grad: | |
out = cp.checkpoint(_inner_forward, x) | |
else: | |
out = _inner_forward(x) | |
return out | |
class PatchEmbed(nn.Module): | |
"""Image to Patch Embedding. | |
Args: | |
img_size (int | tuple): Input image size. | |
default: 224. | |
patch_size (int): Width and height for a patch. | |
default: 16. | |
in_channels (int): Input channels for images. Default: 3. | |
embed_dim (int): The embedding dimension. Default: 768. | |
""" | |
def __init__(self, | |
img_size=224, | |
patch_size=16, | |
in_channels=3, | |
embed_dim=768): | |
super(PatchEmbed, self).__init__() | |
if isinstance(img_size, int): | |
self.img_size = (img_size, img_size) | |
elif isinstance(img_size, tuple): | |
self.img_size = img_size | |
else: | |
raise TypeError('img_size must be type of int or tuple') | |
h, w = self.img_size | |
self.patch_size = (patch_size, patch_size) | |
self.num_patches = (h // patch_size) * (w // patch_size) | |
self.proj = Conv2d( | |
in_channels, embed_dim, kernel_size=patch_size, stride=patch_size) | |
def forward(self, x): | |
return self.proj(x).flatten(2).transpose(1, 2) | |
class VisionTransformer(nn.Module): | |
"""Vision transformer backbone. | |
A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for | |
Image Recognition at Scale` - https://arxiv.org/abs/2010.11929 | |
Args: | |
img_size (tuple): input image size. Default: (224, 224). | |
patch_size (int, tuple): patch size. Default: 16. | |
in_channels (int): number of input channels. Default: 3. | |
embed_dim (int): embedding dimension. Default: 768. | |
depth (int): depth of transformer. Default: 12. | |
num_heads (int): number of attention heads. Default: 12. | |
mlp_ratio (int): ratio of mlp hidden dim to embedding dim. | |
Default: 4. | |
out_indices (list | tuple | int): Output from which stages. | |
Default: -1. | |
qkv_bias (bool): enable bias for qkv if True. Default: True. | |
qk_scale (float): override default qk scale of head_dim ** -0.5 if set. | |
drop_rate (float): dropout rate. Default: 0. | |
attn_drop_rate (float): attention dropout rate. Default: 0. | |
drop_path_rate (float): Rate of DropPath. Default: 0. | |
norm_cfg (dict): Config dict for normalization layer. | |
Default: dict(type='LN', eps=1e-6, requires_grad=True). | |
act_cfg (dict): Config dict for activation layer. | |
Default: dict(type='GELU'). | |
norm_eval (bool): Whether to set norm layers to eval mode, namely, | |
freeze running stats (mean and var). Note: Effect on Batch Norm | |
and its variants only. Default: False. | |
final_norm (bool): Whether to add a additional layer to normalize | |
final feature map. Default: False. | |
interpolate_mode (str): Select the interpolate mode for position | |
embeding vector resize. Default: bicubic. | |
with_cls_token (bool): If concatenating class token into image tokens | |
as transformer input. Default: True. | |
with_cp (bool): Use checkpoint or not. Using checkpoint | |
will save some memory while slowing down the training speed. | |
Default: False. | |
""" | |
def __init__(self, | |
img_size=(224, 224), | |
patch_size=16, | |
in_channels=3, | |
embed_dim=768, | |
depth=12, | |
num_heads=12, | |
mlp_ratio=4, | |
out_indices=11, | |
qkv_bias=True, | |
qk_scale=None, | |
drop_rate=0., | |
attn_drop_rate=0., | |
drop_path_rate=0., | |
norm_cfg=dict(type='LN', eps=1e-6, requires_grad=True), | |
act_cfg=dict(type='GELU'), | |
norm_eval=False, | |
final_norm=False, | |
with_cls_token=True, | |
interpolate_mode='bicubic', | |
with_cp=False): | |
super(VisionTransformer, self).__init__() | |
self.img_size = img_size | |
self.patch_size = patch_size | |
self.features = self.embed_dim = embed_dim | |
self.patch_embed = PatchEmbed( | |
img_size=img_size, | |
patch_size=patch_size, | |
in_channels=in_channels, | |
embed_dim=embed_dim) | |
self.with_cls_token = with_cls_token | |
self.cls_token = nn.Parameter(torch.zeros(1, 1, self.embed_dim)) | |
self.pos_embed = nn.Parameter( | |
torch.zeros(1, self.patch_embed.num_patches + 1, embed_dim)) | |
self.pos_drop = nn.Dropout(p=drop_rate) | |
if isinstance(out_indices, int): | |
self.out_indices = [out_indices] | |
elif isinstance(out_indices, list) or isinstance(out_indices, tuple): | |
self.out_indices = out_indices | |
else: | |
raise TypeError('out_indices must be type of int, list or tuple') | |
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth) | |
] # stochastic depth decay rule | |
self.blocks = nn.ModuleList([ | |
Block( | |
dim=embed_dim, | |
num_heads=num_heads, | |
mlp_ratio=mlp_ratio, | |
qkv_bias=qkv_bias, | |
qk_scale=qk_scale, | |
drop=dpr[i], | |
attn_drop=attn_drop_rate, | |
act_cfg=act_cfg, | |
norm_cfg=norm_cfg, | |
with_cp=with_cp) for i in range(depth) | |
]) | |
self.interpolate_mode = interpolate_mode | |
self.final_norm = final_norm | |
if final_norm: | |
_, self.norm = build_norm_layer(norm_cfg, embed_dim) | |
self.norm_eval = norm_eval | |
self.with_cp = with_cp | |
def init_weights(self, pretrained=None): | |
if isinstance(pretrained, str): | |
logger = get_root_logger() | |
checkpoint = _load_checkpoint(pretrained, logger=logger) | |
if 'state_dict' in checkpoint: | |
state_dict = checkpoint['state_dict'] | |
else: | |
state_dict = checkpoint | |
if 'pos_embed' in state_dict.keys(): | |
if self.pos_embed.shape != state_dict['pos_embed'].shape: | |
logger.info(msg=f'Resize the pos_embed shape from \ | |
{state_dict["pos_embed"].shape} to {self.pos_embed.shape}') | |
h, w = self.img_size | |
pos_size = int( | |
math.sqrt(state_dict['pos_embed'].shape[1] - 1)) | |
state_dict['pos_embed'] = self.resize_pos_embed( | |
state_dict['pos_embed'], (h, w), (pos_size, pos_size), | |
self.patch_size, self.interpolate_mode) | |
self.load_state_dict(state_dict, False) | |
elif pretrained is None: | |
# We only implement the 'jax_impl' initialization implemented at | |
# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py#L353 # noqa: E501 | |
trunc_normal_(self.pos_embed, std=.02) | |
trunc_normal_(self.cls_token, std=.02) | |
for n, m in self.named_modules(): | |
if isinstance(m, Linear): | |
trunc_normal_(m.weight, std=.02) | |
if m.bias is not None: | |
if 'mlp' in n: | |
normal_init(m.bias, std=1e-6) | |
else: | |
constant_init(m.bias, 0) | |
elif isinstance(m, Conv2d): | |
kaiming_init(m.weight, mode='fan_in') | |
if m.bias is not None: | |
constant_init(m.bias, 0) | |
elif isinstance(m, (_BatchNorm, nn.GroupNorm, nn.LayerNorm)): | |
constant_init(m.bias, 0) | |
constant_init(m.weight, 1.0) | |
else: | |
raise TypeError('pretrained must be a str or None') | |
def _pos_embeding(self, img, patched_img, pos_embed): | |
"""Positiong embeding method. | |
Resize the pos_embed, if the input image size doesn't match | |
the training size. | |
Args: | |
img (torch.Tensor): The inference image tensor, the shape | |
must be [B, C, H, W]. | |
patched_img (torch.Tensor): The patched image, it should be | |
shape of [B, L1, C]. | |
pos_embed (torch.Tensor): The pos_embed weighs, it should be | |
shape of [B, L2, c]. | |
Return: | |
torch.Tensor: The pos encoded image feature. | |
""" | |
assert patched_img.ndim == 3 and pos_embed.ndim == 3, \ | |
'the shapes of patched_img and pos_embed must be [B, L, C]' | |
x_len, pos_len = patched_img.shape[1], pos_embed.shape[1] | |
if x_len != pos_len: | |
if pos_len == (self.img_size[0] // self.patch_size) * ( | |
self.img_size[1] // self.patch_size) + 1: | |
pos_h = self.img_size[0] // self.patch_size | |
pos_w = self.img_size[1] // self.patch_size | |
else: | |
raise ValueError( | |
'Unexpected shape of pos_embed, got {}.'.format( | |
pos_embed.shape)) | |
pos_embed = self.resize_pos_embed(pos_embed, img.shape[2:], | |
(pos_h, pos_w), self.patch_size, | |
self.interpolate_mode) | |
return self.pos_drop(patched_img + pos_embed) | |
def resize_pos_embed(pos_embed, input_shpae, pos_shape, patch_size, mode): | |
"""Resize pos_embed weights. | |
Resize pos_embed using bicubic interpolate method. | |
Args: | |
pos_embed (torch.Tensor): pos_embed weights. | |
input_shpae (tuple): Tuple for (input_h, intput_w). | |
pos_shape (tuple): Tuple for (pos_h, pos_w). | |
patch_size (int): Patch size. | |
Return: | |
torch.Tensor: The resized pos_embed of shape [B, L_new, C] | |
""" | |
assert pos_embed.ndim == 3, 'shape of pos_embed must be [B, L, C]' | |
input_h, input_w = input_shpae | |
pos_h, pos_w = pos_shape | |
cls_token_weight = pos_embed[:, 0] | |
pos_embed_weight = pos_embed[:, (-1 * pos_h * pos_w):] | |
pos_embed_weight = pos_embed_weight.reshape( | |
1, pos_h, pos_w, pos_embed.shape[2]).permute(0, 3, 1, 2) | |
pos_embed_weight = F.interpolate( | |
pos_embed_weight, | |
size=[input_h // patch_size, input_w // patch_size], | |
align_corners=False, | |
mode=mode) | |
cls_token_weight = cls_token_weight.unsqueeze(1) | |
pos_embed_weight = torch.flatten(pos_embed_weight, 2).transpose(1, 2) | |
pos_embed = torch.cat((cls_token_weight, pos_embed_weight), dim=1) | |
return pos_embed | |
def forward(self, inputs): | |
B = inputs.shape[0] | |
x = self.patch_embed(inputs) | |
cls_tokens = self.cls_token.expand(B, -1, -1) | |
x = torch.cat((cls_tokens, x), dim=1) | |
x = self._pos_embeding(inputs, x, self.pos_embed) | |
if not self.with_cls_token: | |
# Remove class token for transformer input | |
x = x[:, 1:] | |
outs = [] | |
for i, blk in enumerate(self.blocks): | |
x = blk(x) | |
if i == len(self.blocks) - 1: | |
if self.final_norm: | |
x = self.norm(x) | |
if i in self.out_indices: | |
if self.with_cls_token: | |
# Remove class token and reshape token for decoder head | |
out = x[:, 1:] | |
else: | |
out = x | |
B, _, C = out.shape | |
out = out.reshape(B, inputs.shape[2] // self.patch_size, | |
inputs.shape[3] // self.patch_size, | |
C).permute(0, 3, 1, 2) | |
outs.append(out) | |
return tuple(outs) | |
def train(self, mode=True): | |
super(VisionTransformer, self).train(mode) | |
if mode and self.norm_eval: | |
for m in self.modules(): | |
if isinstance(m, nn.LayerNorm): | |
m.eval() | |