Spaces:
Paused
Paused
import os | |
import types | |
import torch | |
import numpy as np | |
from einops import rearrange | |
from .models.NNET import NNET | |
from modules import devices | |
from annotator.annotator_path import models_path | |
import torchvision.transforms as transforms | |
# load model | |
def load_checkpoint(fpath, model): | |
ckpt = torch.load(fpath, map_location='cpu')['model'] | |
load_dict = {} | |
for k, v in ckpt.items(): | |
if k.startswith('module.'): | |
k_ = k.replace('module.', '') | |
load_dict[k_] = v | |
else: | |
load_dict[k] = v | |
model.load_state_dict(load_dict) | |
return model | |
class NormalBaeDetector: | |
model_dir = os.path.join(models_path, "normal_bae") | |
def __init__(self): | |
self.model = None | |
self.device = devices.get_device_for("controlnet") | |
def load_model(self): | |
remote_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/scannet.pt" | |
modelpath = os.path.join(self.model_dir, "scannet.pt") | |
if not os.path.exists(modelpath): | |
from basicsr.utils.download_util import load_file_from_url | |
load_file_from_url(remote_model_path, model_dir=self.model_dir) | |
args = types.SimpleNamespace() | |
args.mode = 'client' | |
args.architecture = 'BN' | |
args.pretrained = 'scannet' | |
args.sampling_ratio = 0.4 | |
args.importance_ratio = 0.7 | |
model = NNET(args) | |
model = load_checkpoint(modelpath, model) | |
model.eval() | |
self.model = model.to(self.device) | |
self.norm = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) | |
def unload_model(self): | |
if self.model is not None: | |
self.model.cpu() | |
def __call__(self, input_image): | |
if self.model is None: | |
self.load_model() | |
self.model.to(self.device) | |
assert input_image.ndim == 3 | |
image_normal = input_image | |
with torch.no_grad(): | |
image_normal = torch.from_numpy(image_normal).float().to(self.device) | |
image_normal = image_normal / 255.0 | |
image_normal = rearrange(image_normal, 'h w c -> 1 c h w') | |
image_normal = self.norm(image_normal) | |
normal = self.model(image_normal) | |
normal = normal[0][-1][:, :3] | |
# d = torch.sum(normal ** 2.0, dim=1, keepdim=True) ** 0.5 | |
# d = torch.maximum(d, torch.ones_like(d) * 1e-5) | |
# normal /= d | |
normal = ((normal + 1) * 0.5).clip(0, 1) | |
normal = rearrange(normal[0], 'c h w -> h w c').cpu().numpy() | |
normal_image = (normal * 255.0).clip(0, 255).astype(np.uint8) | |
return normal_image | |