QuintW's picture
added controlnet in build in extensions
78db0f1
raw
history blame
1.69 kB
import cv2
import numpy as np
import torch
from einops import rearrange
from .api import MiDaSInference
from modules import devices
model = None
def unload_midas_model():
global model
if model is not None:
model = model.cpu()
def apply_midas(input_image, a=np.pi * 2.0, bg_th=0.1):
global model
if model is None:
model = MiDaSInference(model_type="dpt_hybrid")
if devices.get_device_for("controlnet").type != 'mps':
model = model.to(devices.get_device_for("controlnet"))
assert input_image.ndim == 3
image_depth = input_image
with torch.no_grad():
image_depth = torch.from_numpy(image_depth).float()
if devices.get_device_for("controlnet").type != 'mps':
image_depth = image_depth.to(devices.get_device_for("controlnet"))
image_depth = image_depth / 127.5 - 1.0
image_depth = rearrange(image_depth, 'h w c -> 1 c h w')
depth = model(image_depth)[0]
depth_pt = depth.clone()
depth_pt -= torch.min(depth_pt)
depth_pt /= torch.max(depth_pt)
depth_pt = depth_pt.cpu().numpy()
depth_image = (depth_pt * 255.0).clip(0, 255).astype(np.uint8)
depth_np = depth.cpu().numpy()
x = cv2.Sobel(depth_np, cv2.CV_32F, 1, 0, ksize=3)
y = cv2.Sobel(depth_np, cv2.CV_32F, 0, 1, ksize=3)
z = np.ones_like(x) * a
x[depth_pt < bg_th] = 0
y[depth_pt < bg_th] = 0
normal = np.stack([x, y, z], axis=2)
normal /= np.sum(normal ** 2.0, axis=2, keepdims=True) ** 0.5
normal_image = (normal * 127.5 + 127.5).clip(0, 255).astype(np.uint8)[:, :, ::-1]
return depth_image, normal_image