Spaces:
Paused
Paused
import cv2 | |
import numpy as np | |
import torch | |
import os | |
from modules import devices, shared | |
from annotator.annotator_path import models_path | |
from torchvision.transforms import transforms | |
# AdelaiDepth/LeReS imports | |
from .leres.depthmap import estimateleres, estimateboost | |
from .leres.multi_depth_model_woauxi import RelDepthModel | |
from .leres.net_tools import strip_prefix_if_present | |
# pix2pix/merge net imports | |
from .pix2pix.options.test_options import TestOptions | |
from .pix2pix.models.pix2pix4depth_model import Pix2Pix4DepthModel | |
base_model_path = os.path.join(models_path, "leres") | |
old_modeldir = os.path.dirname(os.path.realpath(__file__)) | |
remote_model_path_leres = "https://huggingface.co/lllyasviel/Annotators/resolve/main/res101.pth" | |
remote_model_path_pix2pix = "https://huggingface.co/lllyasviel/Annotators/resolve/main/latest_net_G.pth" | |
model = None | |
pix2pixmodel = None | |
def unload_leres_model(): | |
global model, pix2pixmodel | |
if model is not None: | |
model = model.cpu() | |
if pix2pixmodel is not None: | |
pix2pixmodel = pix2pixmodel.unload_network('G') | |
def apply_leres(input_image, thr_a, thr_b, boost=False): | |
global model, pix2pixmodel | |
if model is None: | |
model_path = os.path.join(base_model_path, "res101.pth") | |
old_model_path = os.path.join(old_modeldir, "res101.pth") | |
if os.path.exists(old_model_path): | |
model_path = old_model_path | |
elif not os.path.exists(model_path): | |
from basicsr.utils.download_util import load_file_from_url | |
load_file_from_url(remote_model_path_leres, model_dir=base_model_path) | |
if torch.cuda.is_available(): | |
checkpoint = torch.load(model_path) | |
else: | |
checkpoint = torch.load(model_path, map_location=torch.device('cpu')) | |
model = RelDepthModel(backbone='resnext101') | |
model.load_state_dict(strip_prefix_if_present(checkpoint['depth_model'], "module."), strict=True) | |
del checkpoint | |
if boost and pix2pixmodel is None: | |
pix2pixmodel_path = os.path.join(base_model_path, "latest_net_G.pth") | |
if not os.path.exists(pix2pixmodel_path): | |
from basicsr.utils.download_util import load_file_from_url | |
load_file_from_url(remote_model_path_pix2pix, model_dir=base_model_path) | |
opt = TestOptions().parse() | |
if not torch.cuda.is_available(): | |
opt.gpu_ids = [] # cpu mode | |
pix2pixmodel = Pix2Pix4DepthModel(opt) | |
pix2pixmodel.save_dir = base_model_path | |
pix2pixmodel.load_networks('latest') | |
pix2pixmodel.eval() | |
if devices.get_device_for("controlnet").type != 'mps': | |
model = model.to(devices.get_device_for("controlnet")) | |
assert input_image.ndim == 3 | |
height, width, dim = input_image.shape | |
with torch.no_grad(): | |
if boost: | |
depth = estimateboost(input_image, model, 0, pix2pixmodel, max(width, height)) | |
else: | |
depth = estimateleres(input_image, model, width, height) | |
numbytes=2 | |
depth_min = depth.min() | |
depth_max = depth.max() | |
max_val = (2**(8*numbytes))-1 | |
# check output before normalizing and mapping to 16 bit | |
if depth_max - depth_min > np.finfo("float").eps: | |
out = max_val * (depth - depth_min) / (depth_max - depth_min) | |
else: | |
out = np.zeros(depth.shape) | |
# single channel, 16 bit image | |
depth_image = out.astype("uint16") | |
# convert to uint8 | |
depth_image = cv2.convertScaleAbs(depth_image, alpha=(255.0/65535.0)) | |
# remove near | |
if thr_a != 0: | |
thr_a = ((thr_a/100)*255) | |
depth_image = cv2.threshold(depth_image, thr_a, 255, cv2.THRESH_TOZERO)[1] | |
# invert image | |
depth_image = cv2.bitwise_not(depth_image) | |
# remove bg | |
if thr_b != 0: | |
thr_b = ((thr_b/100)*255) | |
depth_image = cv2.threshold(depth_image, thr_b, 255, cv2.THRESH_TOZERO)[1] | |
return depth_image | |