Spaces:
Paused
Paused
sd-automatic111
/
extensions
/sd-webui-controlnet
/annotator
/lama
/saicinpainting
/training
/data
/masks.py
import math | |
import random | |
import hashlib | |
import logging | |
from enum import Enum | |
import cv2 | |
import numpy as np | |
# from annotator.lama.saicinpainting.evaluation.masks.mask import SegmentationMask | |
from annotator.lama.saicinpainting.utils import LinearRamp | |
LOGGER = logging.getLogger(__name__) | |
class DrawMethod(Enum): | |
LINE = 'line' | |
CIRCLE = 'circle' | |
SQUARE = 'square' | |
def make_random_irregular_mask(shape, max_angle=4, max_len=60, max_width=20, min_times=0, max_times=10, | |
draw_method=DrawMethod.LINE): | |
draw_method = DrawMethod(draw_method) | |
height, width = shape | |
mask = np.zeros((height, width), np.float32) | |
times = np.random.randint(min_times, max_times + 1) | |
for i in range(times): | |
start_x = np.random.randint(width) | |
start_y = np.random.randint(height) | |
for j in range(1 + np.random.randint(5)): | |
angle = 0.01 + np.random.randint(max_angle) | |
if i % 2 == 0: | |
angle = 2 * 3.1415926 - angle | |
length = 10 + np.random.randint(max_len) | |
brush_w = 5 + np.random.randint(max_width) | |
end_x = np.clip((start_x + length * np.sin(angle)).astype(np.int32), 0, width) | |
end_y = np.clip((start_y + length * np.cos(angle)).astype(np.int32), 0, height) | |
if draw_method == DrawMethod.LINE: | |
cv2.line(mask, (start_x, start_y), (end_x, end_y), 1.0, brush_w) | |
elif draw_method == DrawMethod.CIRCLE: | |
cv2.circle(mask, (start_x, start_y), radius=brush_w, color=1., thickness=-1) | |
elif draw_method == DrawMethod.SQUARE: | |
radius = brush_w // 2 | |
mask[start_y - radius:start_y + radius, start_x - radius:start_x + radius] = 1 | |
start_x, start_y = end_x, end_y | |
return mask[None, ...] | |
class RandomIrregularMaskGenerator: | |
def __init__(self, max_angle=4, max_len=60, max_width=20, min_times=0, max_times=10, ramp_kwargs=None, | |
draw_method=DrawMethod.LINE): | |
self.max_angle = max_angle | |
self.max_len = max_len | |
self.max_width = max_width | |
self.min_times = min_times | |
self.max_times = max_times | |
self.draw_method = draw_method | |
self.ramp = LinearRamp(**ramp_kwargs) if ramp_kwargs is not None else None | |
def __call__(self, img, iter_i=None, raw_image=None): | |
coef = self.ramp(iter_i) if (self.ramp is not None) and (iter_i is not None) else 1 | |
cur_max_len = int(max(1, self.max_len * coef)) | |
cur_max_width = int(max(1, self.max_width * coef)) | |
cur_max_times = int(self.min_times + 1 + (self.max_times - self.min_times) * coef) | |
return make_random_irregular_mask(img.shape[1:], max_angle=self.max_angle, max_len=cur_max_len, | |
max_width=cur_max_width, min_times=self.min_times, max_times=cur_max_times, | |
draw_method=self.draw_method) | |
def make_random_rectangle_mask(shape, margin=10, bbox_min_size=30, bbox_max_size=100, min_times=0, max_times=3): | |
height, width = shape | |
mask = np.zeros((height, width), np.float32) | |
bbox_max_size = min(bbox_max_size, height - margin * 2, width - margin * 2) | |
times = np.random.randint(min_times, max_times + 1) | |
for i in range(times): | |
box_width = np.random.randint(bbox_min_size, bbox_max_size) | |
box_height = np.random.randint(bbox_min_size, bbox_max_size) | |
start_x = np.random.randint(margin, width - margin - box_width + 1) | |
start_y = np.random.randint(margin, height - margin - box_height + 1) | |
mask[start_y:start_y + box_height, start_x:start_x + box_width] = 1 | |
return mask[None, ...] | |
class RandomRectangleMaskGenerator: | |
def __init__(self, margin=10, bbox_min_size=30, bbox_max_size=100, min_times=0, max_times=3, ramp_kwargs=None): | |
self.margin = margin | |
self.bbox_min_size = bbox_min_size | |
self.bbox_max_size = bbox_max_size | |
self.min_times = min_times | |
self.max_times = max_times | |
self.ramp = LinearRamp(**ramp_kwargs) if ramp_kwargs is not None else None | |
def __call__(self, img, iter_i=None, raw_image=None): | |
coef = self.ramp(iter_i) if (self.ramp is not None) and (iter_i is not None) else 1 | |
cur_bbox_max_size = int(self.bbox_min_size + 1 + (self.bbox_max_size - self.bbox_min_size) * coef) | |
cur_max_times = int(self.min_times + (self.max_times - self.min_times) * coef) | |
return make_random_rectangle_mask(img.shape[1:], margin=self.margin, bbox_min_size=self.bbox_min_size, | |
bbox_max_size=cur_bbox_max_size, min_times=self.min_times, | |
max_times=cur_max_times) | |
class RandomSegmentationMaskGenerator: | |
def __init__(self, **kwargs): | |
self.impl = None # will be instantiated in first call (effectively in subprocess) | |
self.kwargs = kwargs | |
def __call__(self, img, iter_i=None, raw_image=None): | |
if self.impl is None: | |
self.impl = SegmentationMask(**self.kwargs) | |
masks = self.impl.get_masks(np.transpose(img, (1, 2, 0))) | |
masks = [m for m in masks if len(np.unique(m)) > 1] | |
return np.random.choice(masks) | |
def make_random_superres_mask(shape, min_step=2, max_step=4, min_width=1, max_width=3): | |
height, width = shape | |
mask = np.zeros((height, width), np.float32) | |
step_x = np.random.randint(min_step, max_step + 1) | |
width_x = np.random.randint(min_width, min(step_x, max_width + 1)) | |
offset_x = np.random.randint(0, step_x) | |
step_y = np.random.randint(min_step, max_step + 1) | |
width_y = np.random.randint(min_width, min(step_y, max_width + 1)) | |
offset_y = np.random.randint(0, step_y) | |
for dy in range(width_y): | |
mask[offset_y + dy::step_y] = 1 | |
for dx in range(width_x): | |
mask[:, offset_x + dx::step_x] = 1 | |
return mask[None, ...] | |
class RandomSuperresMaskGenerator: | |
def __init__(self, **kwargs): | |
self.kwargs = kwargs | |
def __call__(self, img, iter_i=None): | |
return make_random_superres_mask(img.shape[1:], **self.kwargs) | |
class DumbAreaMaskGenerator: | |
min_ratio = 0.1 | |
max_ratio = 0.35 | |
default_ratio = 0.225 | |
def __init__(self, is_training): | |
#Parameters: | |
# is_training(bool): If true - random rectangular mask, if false - central square mask | |
self.is_training = is_training | |
def _random_vector(self, dimension): | |
if self.is_training: | |
lower_limit = math.sqrt(self.min_ratio) | |
upper_limit = math.sqrt(self.max_ratio) | |
mask_side = round((random.random() * (upper_limit - lower_limit) + lower_limit) * dimension) | |
u = random.randint(0, dimension-mask_side-1) | |
v = u+mask_side | |
else: | |
margin = (math.sqrt(self.default_ratio) / 2) * dimension | |
u = round(dimension/2 - margin) | |
v = round(dimension/2 + margin) | |
return u, v | |
def __call__(self, img, iter_i=None, raw_image=None): | |
c, height, width = img.shape | |
mask = np.zeros((height, width), np.float32) | |
x1, x2 = self._random_vector(width) | |
y1, y2 = self._random_vector(height) | |
mask[x1:x2, y1:y2] = 1 | |
return mask[None, ...] | |
class OutpaintingMaskGenerator: | |
def __init__(self, min_padding_percent:float=0.04, max_padding_percent:int=0.25, left_padding_prob:float=0.5, top_padding_prob:float=0.5, | |
right_padding_prob:float=0.5, bottom_padding_prob:float=0.5, is_fixed_randomness:bool=False): | |
""" | |
is_fixed_randomness - get identical paddings for the same image if args are the same | |
""" | |
self.min_padding_percent = min_padding_percent | |
self.max_padding_percent = max_padding_percent | |
self.probs = [left_padding_prob, top_padding_prob, right_padding_prob, bottom_padding_prob] | |
self.is_fixed_randomness = is_fixed_randomness | |
assert self.min_padding_percent <= self.max_padding_percent | |
assert self.max_padding_percent > 0 | |
assert len([x for x in [self.min_padding_percent, self.max_padding_percent] if (x>=0 and x<=1)]) == 2, f"Padding percentage should be in [0,1]" | |
assert sum(self.probs) > 0, f"At least one of the padding probs should be greater than 0 - {self.probs}" | |
assert len([x for x in self.probs if (x >= 0) and (x <= 1)]) == 4, f"At least one of padding probs is not in [0,1] - {self.probs}" | |
if len([x for x in self.probs if x > 0]) == 1: | |
LOGGER.warning(f"Only one padding prob is greater than zero - {self.probs}. That means that the outpainting masks will be always on the same side") | |
def apply_padding(self, mask, coord): | |
mask[int(coord[0][0]*self.img_h):int(coord[1][0]*self.img_h), | |
int(coord[0][1]*self.img_w):int(coord[1][1]*self.img_w)] = 1 | |
return mask | |
def get_padding(self, size): | |
n1 = int(self.min_padding_percent*size) | |
n2 = int(self.max_padding_percent*size) | |
return self.rnd.randint(n1, n2) / size | |
def _img2rs(img): | |
arr = np.ascontiguousarray(img.astype(np.uint8)) | |
str_hash = hashlib.sha1(arr).hexdigest() | |
res = hash(str_hash)%(2**32) | |
return res | |
def __call__(self, img, iter_i=None, raw_image=None): | |
c, self.img_h, self.img_w = img.shape | |
mask = np.zeros((self.img_h, self.img_w), np.float32) | |
at_least_one_mask_applied = False | |
if self.is_fixed_randomness: | |
assert raw_image is not None, f"Cant calculate hash on raw_image=None" | |
rs = self._img2rs(raw_image) | |
self.rnd = np.random.RandomState(rs) | |
else: | |
self.rnd = np.random | |
coords = [[ | |
(0,0), | |
(1,self.get_padding(size=self.img_h)) | |
], | |
[ | |
(0,0), | |
(self.get_padding(size=self.img_w),1) | |
], | |
[ | |
(0,1-self.get_padding(size=self.img_h)), | |
(1,1) | |
], | |
[ | |
(1-self.get_padding(size=self.img_w),0), | |
(1,1) | |
]] | |
for pp, coord in zip(self.probs, coords): | |
if self.rnd.random() < pp: | |
at_least_one_mask_applied = True | |
mask = self.apply_padding(mask=mask, coord=coord) | |
if not at_least_one_mask_applied: | |
idx = self.rnd.choice(range(len(coords)), p=np.array(self.probs)/sum(self.probs)) | |
mask = self.apply_padding(mask=mask, coord=coords[idx]) | |
return mask[None, ...] | |
class MixedMaskGenerator: | |
def __init__(self, irregular_proba=1/3, irregular_kwargs=None, | |
box_proba=1/3, box_kwargs=None, | |
segm_proba=1/3, segm_kwargs=None, | |
squares_proba=0, squares_kwargs=None, | |
superres_proba=0, superres_kwargs=None, | |
outpainting_proba=0, outpainting_kwargs=None, | |
invert_proba=0): | |
self.probas = [] | |
self.gens = [] | |
if irregular_proba > 0: | |
self.probas.append(irregular_proba) | |
if irregular_kwargs is None: | |
irregular_kwargs = {} | |
else: | |
irregular_kwargs = dict(irregular_kwargs) | |
irregular_kwargs['draw_method'] = DrawMethod.LINE | |
self.gens.append(RandomIrregularMaskGenerator(**irregular_kwargs)) | |
if box_proba > 0: | |
self.probas.append(box_proba) | |
if box_kwargs is None: | |
box_kwargs = {} | |
self.gens.append(RandomRectangleMaskGenerator(**box_kwargs)) | |
if segm_proba > 0: | |
self.probas.append(segm_proba) | |
if segm_kwargs is None: | |
segm_kwargs = {} | |
self.gens.append(RandomSegmentationMaskGenerator(**segm_kwargs)) | |
if squares_proba > 0: | |
self.probas.append(squares_proba) | |
if squares_kwargs is None: | |
squares_kwargs = {} | |
else: | |
squares_kwargs = dict(squares_kwargs) | |
squares_kwargs['draw_method'] = DrawMethod.SQUARE | |
self.gens.append(RandomIrregularMaskGenerator(**squares_kwargs)) | |
if superres_proba > 0: | |
self.probas.append(superres_proba) | |
if superres_kwargs is None: | |
superres_kwargs = {} | |
self.gens.append(RandomSuperresMaskGenerator(**superres_kwargs)) | |
if outpainting_proba > 0: | |
self.probas.append(outpainting_proba) | |
if outpainting_kwargs is None: | |
outpainting_kwargs = {} | |
self.gens.append(OutpaintingMaskGenerator(**outpainting_kwargs)) | |
self.probas = np.array(self.probas, dtype='float32') | |
self.probas /= self.probas.sum() | |
self.invert_proba = invert_proba | |
def __call__(self, img, iter_i=None, raw_image=None): | |
kind = np.random.choice(len(self.probas), p=self.probas) | |
gen = self.gens[kind] | |
result = gen(img, iter_i=iter_i, raw_image=raw_image) | |
if self.invert_proba > 0 and random.random() < self.invert_proba: | |
result = 1 - result | |
return result | |
def get_mask_generator(kind, kwargs): | |
if kind is None: | |
kind = "mixed" | |
if kwargs is None: | |
kwargs = {} | |
if kind == "mixed": | |
cl = MixedMaskGenerator | |
elif kind == "outpainting": | |
cl = OutpaintingMaskGenerator | |
elif kind == "dumb": | |
cl = DumbAreaMaskGenerator | |
else: | |
raise NotImplementedError(f"No such generator kind = {kind}") | |
return cl(**kwargs) | |