Spaces:
Paused
Paused
import argparse | |
import torch | |
from safetensors.torch import load_file, save_file | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--sd15", default=None, type=str, required=True, help="Path to the original sd15.") | |
parser.add_argument("--control", default=None, type=str, required=True, help="Path to the sd15 with control.") | |
parser.add_argument("--dst", default=None, type=str, required=True, help="Path to the output difference model.") | |
parser.add_argument("--fp16", action="store_true", help="Save as fp16.") | |
parser.add_argument("--bf16", action="store_true", help="Save as bf16.") | |
args = parser.parse_args() | |
assert args.sd15 is not None, "Must provide a original sd15 model path!" | |
assert args.control is not None, "Must provide a sd15 with control model path!" | |
assert args.dst is not None, "Must provide a output path!" | |
# make differences: copy from https://github.com/lllyasviel/ControlNet/blob/main/tool_transfer_control.py | |
def get_node_name(name, parent_name): | |
if len(name) <= len(parent_name): | |
return False, '' | |
p = name[:len(parent_name)] | |
if p != parent_name: | |
return False, '' | |
return True, name[len(parent_name):] | |
# remove first/cond stage from sd to reduce memory usage | |
def remove_first_and_cond(sd): | |
keys = list(sd.keys()) | |
for key in keys: | |
is_first_stage, _ = get_node_name(key, 'first_stage_model') | |
is_cond_stage, _ = get_node_name(key, 'cond_stage_model') | |
if is_first_stage or is_cond_stage: | |
sd.pop(key, None) | |
return sd | |
print(f"loading: {args.sd15}") | |
if args.sd15.endswith(".safetensors"): | |
sd15_state_dict = load_file(args.sd15) | |
else: | |
sd15_state_dict = torch.load(args.sd15) | |
sd15_state_dict = sd15_state_dict.pop("state_dict", sd15_state_dict) | |
sd15_state_dict = remove_first_and_cond(sd15_state_dict) | |
print(f"loading: {args.control}") | |
if args.control.endswith(".safetensors"): | |
control_state_dict = load_file(args.control) | |
else: | |
control_state_dict = torch.load(args.control) | |
control_state_dict = remove_first_and_cond(control_state_dict) | |
# make diff of original and control | |
print(f"create difference") | |
keys = list(control_state_dict.keys()) | |
final_state_dict = {"difference": torch.tensor(1.0)} # indicates difference | |
for key in keys: | |
p = control_state_dict.pop(key) | |
is_control, node_name = get_node_name(key, 'control_') | |
if not is_control: | |
continue | |
sd15_key_name = 'model.diffusion_' + node_name | |
if sd15_key_name in sd15_state_dict: # part of U-Net | |
# print("in sd15", key, sd15_key_name) | |
p_new = p - sd15_state_dict.pop(sd15_key_name) | |
if torch.max(torch.abs(p_new)) < 1e-6: # no difference? | |
print("no diff", key, sd15_key_name) | |
continue | |
else: | |
# print("not in sd15", key, sd15_key_name) | |
p_new = p # hint or zero_conv | |
final_state_dict[key] = p_new | |
save_dtype = None | |
if args.fp16: | |
save_dtype = torch.float16 | |
elif args.bf16: | |
save_dtype = torch.bfloat16 | |
if save_dtype is not None: | |
for key in final_state_dict.keys(): | |
final_state_dict[key] = final_state_dict[key].to(save_dtype) | |
print("saving difference.") | |
if args.dst.endswith(".safetensors"): | |
save_file(final_state_dict, args.dst) | |
else: | |
torch.save({"state_dict": final_state_dict}, args.dst) | |
print("done!") | |