sd-automatic111 / scripts /sd_upscale.py
QuintW's picture
update repo
c9ea4f0
raw
history blame
3.86 kB
import math
import modules.scripts as scripts
import gradio as gr
from PIL import Image
from modules import processing, shared, images, devices
from modules.processing import Processed
from modules.shared import opts, state
class Script(scripts.Script):
def title(self):
return "SD upscale"
def show(self, is_img2img):
return is_img2img
def ui(self, is_img2img):
info = gr.HTML("<p style=\"margin-bottom:0.75em\">Will upscale the image by the selected scale factor; use width and height sliders to set tile size</p>")
overlap = gr.Slider(minimum=0, maximum=256, step=16, label='Tile overlap', value=64, elem_id=self.elem_id("overlap"))
scale_factor = gr.Slider(minimum=1.0, maximum=4.0, step=0.05, label='Scale Factor', value=2.0, elem_id=self.elem_id("scale_factor"))
upscaler_index = gr.Radio(label='Upscaler', choices=[x.name for x in shared.sd_upscalers], value=shared.sd_upscalers[0].name, type="index", elem_id=self.elem_id("upscaler_index"))
return [info, overlap, upscaler_index, scale_factor]
def run(self, p, _, overlap, upscaler_index, scale_factor):
if isinstance(upscaler_index, str):
upscaler_index = [x.name.lower() for x in shared.sd_upscalers].index(upscaler_index.lower())
processing.fix_seed(p)
upscaler = shared.sd_upscalers[upscaler_index]
p.extra_generation_params["SD upscale overlap"] = overlap
p.extra_generation_params["SD upscale upscaler"] = upscaler.name
initial_info = None
seed = p.seed
init_img = p.init_images[0]
init_img = images.flatten(init_img, opts.img2img_background_color)
if upscaler.name != "None":
img = upscaler.scaler.upscale(init_img, scale_factor, upscaler.data_path)
else:
img = init_img
devices.torch_gc()
grid = images.split_grid(img, tile_w=p.width, tile_h=p.height, overlap=overlap)
batch_size = p.batch_size
upscale_count = p.n_iter
p.n_iter = 1
p.do_not_save_grid = True
p.do_not_save_samples = True
work = []
for _y, _h, row in grid.tiles:
for tiledata in row:
work.append(tiledata[2])
batch_count = math.ceil(len(work) / batch_size)
state.job_count = batch_count * upscale_count
print(f"SD upscaling will process a total of {len(work)} images tiled as {len(grid.tiles[0][2])}x{len(grid.tiles)} per upscale in a total of {state.job_count} batches.")
result_images = []
for n in range(upscale_count):
start_seed = seed + n
p.seed = start_seed
work_results = []
for i in range(batch_count):
p.batch_size = batch_size
p.init_images = work[i * batch_size:(i + 1) * batch_size]
state.job = f"Batch {i + 1 + n * batch_count} out of {state.job_count}"
processed = processing.process_images(p)
if initial_info is None:
initial_info = processed.info
p.seed = processed.seed + 1
work_results += processed.images
image_index = 0
for _y, _h, row in grid.tiles:
for tiledata in row:
tiledata[2] = work_results[image_index] if image_index < len(work_results) else Image.new("RGB", (p.width, p.height))
image_index += 1
combined_image = images.combine_grid(grid)
result_images.append(combined_image)
if opts.samples_save:
images.save_image(combined_image, p.outpath_samples, "", start_seed, p.prompt, opts.samples_format, info=initial_info, p=p)
processed = Processed(p, result_images, seed, initial_info)
return processed