Spaces:
Paused
Paused
import math | |
import modules.scripts as scripts | |
import gradio as gr | |
from PIL import Image | |
from modules import processing, shared, images, devices | |
from modules.processing import Processed | |
from modules.shared import opts, state | |
class Script(scripts.Script): | |
def title(self): | |
return "SD upscale" | |
def show(self, is_img2img): | |
return is_img2img | |
def ui(self, is_img2img): | |
info = gr.HTML("<p style=\"margin-bottom:0.75em\">Will upscale the image by the selected scale factor; use width and height sliders to set tile size</p>") | |
overlap = gr.Slider(minimum=0, maximum=256, step=16, label='Tile overlap', value=64, elem_id=self.elem_id("overlap")) | |
scale_factor = gr.Slider(minimum=1.0, maximum=4.0, step=0.05, label='Scale Factor', value=2.0, elem_id=self.elem_id("scale_factor")) | |
upscaler_index = gr.Radio(label='Upscaler', choices=[x.name for x in shared.sd_upscalers], value=shared.sd_upscalers[0].name, type="index", elem_id=self.elem_id("upscaler_index")) | |
return [info, overlap, upscaler_index, scale_factor] | |
def run(self, p, _, overlap, upscaler_index, scale_factor): | |
if isinstance(upscaler_index, str): | |
upscaler_index = [x.name.lower() for x in shared.sd_upscalers].index(upscaler_index.lower()) | |
processing.fix_seed(p) | |
upscaler = shared.sd_upscalers[upscaler_index] | |
p.extra_generation_params["SD upscale overlap"] = overlap | |
p.extra_generation_params["SD upscale upscaler"] = upscaler.name | |
initial_info = None | |
seed = p.seed | |
init_img = p.init_images[0] | |
init_img = images.flatten(init_img, opts.img2img_background_color) | |
if upscaler.name != "None": | |
img = upscaler.scaler.upscale(init_img, scale_factor, upscaler.data_path) | |
else: | |
img = init_img | |
devices.torch_gc() | |
grid = images.split_grid(img, tile_w=p.width, tile_h=p.height, overlap=overlap) | |
batch_size = p.batch_size | |
upscale_count = p.n_iter | |
p.n_iter = 1 | |
p.do_not_save_grid = True | |
p.do_not_save_samples = True | |
work = [] | |
for _y, _h, row in grid.tiles: | |
for tiledata in row: | |
work.append(tiledata[2]) | |
batch_count = math.ceil(len(work) / batch_size) | |
state.job_count = batch_count * upscale_count | |
print(f"SD upscaling will process a total of {len(work)} images tiled as {len(grid.tiles[0][2])}x{len(grid.tiles)} per upscale in a total of {state.job_count} batches.") | |
result_images = [] | |
for n in range(upscale_count): | |
start_seed = seed + n | |
p.seed = start_seed | |
work_results = [] | |
for i in range(batch_count): | |
p.batch_size = batch_size | |
p.init_images = work[i * batch_size:(i + 1) * batch_size] | |
state.job = f"Batch {i + 1 + n * batch_count} out of {state.job_count}" | |
processed = processing.process_images(p) | |
if initial_info is None: | |
initial_info = processed.info | |
p.seed = processed.seed + 1 | |
work_results += processed.images | |
image_index = 0 | |
for _y, _h, row in grid.tiles: | |
for tiledata in row: | |
tiledata[2] = work_results[image_index] if image_index < len(work_results) else Image.new("RGB", (p.width, p.height)) | |
image_index += 1 | |
combined_image = images.combine_grid(grid) | |
result_images.append(combined_image) | |
if opts.samples_save: | |
images.save_image(combined_image, p.outpath_samples, "", start_seed, p.prompt, opts.samples_format, info=initial_info, p=p) | |
processed = Processed(p, result_images, seed, initial_info) | |
return processed | |