Spaces:
Paused
Paused
# Copyright (c) OpenMMLab. All rights reserved. | |
import cv2 | |
import numpy as np | |
from .cv_ox_det import inference_detector | |
from .cv_ox_pose import inference_pose | |
from typing import List, Optional | |
from .types import PoseResult, BodyResult, Keypoint | |
class Wholebody: | |
def __init__(self, onnx_det: str, onnx_pose: str): | |
# Always loads to CPU to avoid building OpenCV. | |
device = 'cpu' | |
backend = cv2.dnn.DNN_BACKEND_OPENCV if device == 'cpu' else cv2.dnn.DNN_BACKEND_CUDA | |
# You need to manually build OpenCV through cmake to work with your GPU. | |
providers = cv2.dnn.DNN_TARGET_CPU if device == 'cpu' else cv2.dnn.DNN_TARGET_CUDA | |
self.session_det = cv2.dnn.readNetFromONNX(onnx_det) | |
self.session_det.setPreferableBackend(backend) | |
self.session_det.setPreferableTarget(providers) | |
self.session_pose = cv2.dnn.readNetFromONNX(onnx_pose) | |
self.session_pose.setPreferableBackend(backend) | |
self.session_pose.setPreferableTarget(providers) | |
def __call__(self, oriImg) -> Optional[np.ndarray]: | |
det_result = inference_detector(self.session_det, oriImg) | |
if det_result is None: | |
return None | |
keypoints, scores = inference_pose(self.session_pose, det_result, oriImg) | |
keypoints_info = np.concatenate( | |
(keypoints, scores[..., None]), axis=-1) | |
# compute neck joint | |
neck = np.mean(keypoints_info[:, [5, 6]], axis=1) | |
# neck score when visualizing pred | |
neck[:, 2:4] = np.logical_and( | |
keypoints_info[:, 5, 2:4] > 0.3, | |
keypoints_info[:, 6, 2:4] > 0.3).astype(int) | |
new_keypoints_info = np.insert( | |
keypoints_info, 17, neck, axis=1) | |
mmpose_idx = [ | |
17, 6, 8, 10, 7, 9, 12, 14, 16, 13, 15, 2, 1, 4, 3 | |
] | |
openpose_idx = [ | |
1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17 | |
] | |
new_keypoints_info[:, openpose_idx] = \ | |
new_keypoints_info[:, mmpose_idx] | |
keypoints_info = new_keypoints_info | |
return keypoints_info | |
def format_result(keypoints_info: Optional[np.ndarray]) -> List[PoseResult]: | |
def format_keypoint_part( | |
part: np.ndarray, | |
) -> Optional[List[Optional[Keypoint]]]: | |
keypoints = [ | |
Keypoint(x, y, score, i) if score >= 0.3 else None | |
for i, (x, y, score) in enumerate(part) | |
] | |
return ( | |
None if all(keypoint is None for keypoint in keypoints) else keypoints | |
) | |
def total_score(keypoints: Optional[List[Optional[Keypoint]]]) -> float: | |
return ( | |
sum(keypoint.score for keypoint in keypoints if keypoint is not None) | |
if keypoints is not None | |
else 0.0 | |
) | |
pose_results = [] | |
if keypoints_info is None: | |
return pose_results | |
for instance in keypoints_info: | |
body_keypoints = format_keypoint_part(instance[:18]) or ([None] * 18) | |
left_hand = format_keypoint_part(instance[92:113]) | |
right_hand = format_keypoint_part(instance[113:134]) | |
face = format_keypoint_part(instance[24:92]) | |
# Openpose face consists of 70 points in total, while DWPose only | |
# provides 68 points. Padding the last 2 points. | |
if face is not None: | |
# left eye | |
face.append(body_keypoints[14]) | |
# right eye | |
face.append(body_keypoints[15]) | |
body = BodyResult( | |
body_keypoints, total_score(body_keypoints), len(body_keypoints) | |
) | |
pose_results.append(PoseResult(body, left_hand, right_hand, face)) | |
return pose_results | |