QuintW's picture
Upload 1350 files
3f9c56c
raw
history blame
15.8 kB
# Copyright (c) OpenMMLab. All rights reserved.
import functools
import warnings
from collections import abc
from inspect import getfullargspec
import numpy as np
import torch
import torch.nn as nn
from annotator.mmpkg.mmcv.utils import TORCH_VERSION, digit_version
from .dist_utils import allreduce_grads as _allreduce_grads
try:
# If PyTorch version >= 1.6.0, torch.cuda.amp.autocast would be imported
# and used; otherwise, auto fp16 will adopt mmcv's implementation.
# Note that when PyTorch >= 1.6.0, we still cast tensor types to fp16
# manually, so the behavior may not be consistent with real amp.
from torch.cuda.amp import autocast
except ImportError:
pass
def cast_tensor_type(inputs, src_type, dst_type):
"""Recursively convert Tensor in inputs from src_type to dst_type.
Args:
inputs: Inputs that to be casted.
src_type (torch.dtype): Source type..
dst_type (torch.dtype): Destination type.
Returns:
The same type with inputs, but all contained Tensors have been cast.
"""
if isinstance(inputs, nn.Module):
return inputs
elif isinstance(inputs, torch.Tensor):
return inputs.to(dst_type)
elif isinstance(inputs, str):
return inputs
elif isinstance(inputs, np.ndarray):
return inputs
elif isinstance(inputs, abc.Mapping):
return type(inputs)({
k: cast_tensor_type(v, src_type, dst_type)
for k, v in inputs.items()
})
elif isinstance(inputs, abc.Iterable):
return type(inputs)(
cast_tensor_type(item, src_type, dst_type) for item in inputs)
else:
return inputs
def auto_fp16(apply_to=None, out_fp32=False):
"""Decorator to enable fp16 training automatically.
This decorator is useful when you write custom modules and want to support
mixed precision training. If inputs arguments are fp32 tensors, they will
be converted to fp16 automatically. Arguments other than fp32 tensors are
ignored. If you are using PyTorch >= 1.6, torch.cuda.amp is used as the
backend, otherwise, original mmcv implementation will be adopted.
Args:
apply_to (Iterable, optional): The argument names to be converted.
`None` indicates all arguments.
out_fp32 (bool): Whether to convert the output back to fp32.
Example:
>>> import torch.nn as nn
>>> class MyModule1(nn.Module):
>>>
>>> # Convert x and y to fp16
>>> @auto_fp16()
>>> def forward(self, x, y):
>>> pass
>>> import torch.nn as nn
>>> class MyModule2(nn.Module):
>>>
>>> # convert pred to fp16
>>> @auto_fp16(apply_to=('pred', ))
>>> def do_something(self, pred, others):
>>> pass
"""
def auto_fp16_wrapper(old_func):
@functools.wraps(old_func)
def new_func(*args, **kwargs):
# check if the module has set the attribute `fp16_enabled`, if not,
# just fallback to the original method.
if not isinstance(args[0], torch.nn.Module):
raise TypeError('@auto_fp16 can only be used to decorate the '
'method of nn.Module')
if not (hasattr(args[0], 'fp16_enabled') and args[0].fp16_enabled):
return old_func(*args, **kwargs)
# get the arg spec of the decorated method
args_info = getfullargspec(old_func)
# get the argument names to be casted
args_to_cast = args_info.args if apply_to is None else apply_to
# convert the args that need to be processed
new_args = []
# NOTE: default args are not taken into consideration
if args:
arg_names = args_info.args[:len(args)]
for i, arg_name in enumerate(arg_names):
if arg_name in args_to_cast:
new_args.append(
cast_tensor_type(args[i], torch.float, torch.half))
else:
new_args.append(args[i])
# convert the kwargs that need to be processed
new_kwargs = {}
if kwargs:
for arg_name, arg_value in kwargs.items():
if arg_name in args_to_cast:
new_kwargs[arg_name] = cast_tensor_type(
arg_value, torch.float, torch.half)
else:
new_kwargs[arg_name] = arg_value
# apply converted arguments to the decorated method
if (TORCH_VERSION != 'parrots' and
digit_version(TORCH_VERSION) >= digit_version('1.6.0')):
with autocast(enabled=True):
output = old_func(*new_args, **new_kwargs)
else:
output = old_func(*new_args, **new_kwargs)
# cast the results back to fp32 if necessary
if out_fp32:
output = cast_tensor_type(output, torch.half, torch.float)
return output
return new_func
return auto_fp16_wrapper
def force_fp32(apply_to=None, out_fp16=False):
"""Decorator to convert input arguments to fp32 in force.
This decorator is useful when you write custom modules and want to support
mixed precision training. If there are some inputs that must be processed
in fp32 mode, then this decorator can handle it. If inputs arguments are
fp16 tensors, they will be converted to fp32 automatically. Arguments other
than fp16 tensors are ignored. If you are using PyTorch >= 1.6,
torch.cuda.amp is used as the backend, otherwise, original mmcv
implementation will be adopted.
Args:
apply_to (Iterable, optional): The argument names to be converted.
`None` indicates all arguments.
out_fp16 (bool): Whether to convert the output back to fp16.
Example:
>>> import torch.nn as nn
>>> class MyModule1(nn.Module):
>>>
>>> # Convert x and y to fp32
>>> @force_fp32()
>>> def loss(self, x, y):
>>> pass
>>> import torch.nn as nn
>>> class MyModule2(nn.Module):
>>>
>>> # convert pred to fp32
>>> @force_fp32(apply_to=('pred', ))
>>> def post_process(self, pred, others):
>>> pass
"""
def force_fp32_wrapper(old_func):
@functools.wraps(old_func)
def new_func(*args, **kwargs):
# check if the module has set the attribute `fp16_enabled`, if not,
# just fallback to the original method.
if not isinstance(args[0], torch.nn.Module):
raise TypeError('@force_fp32 can only be used to decorate the '
'method of nn.Module')
if not (hasattr(args[0], 'fp16_enabled') and args[0].fp16_enabled):
return old_func(*args, **kwargs)
# get the arg spec of the decorated method
args_info = getfullargspec(old_func)
# get the argument names to be casted
args_to_cast = args_info.args if apply_to is None else apply_to
# convert the args that need to be processed
new_args = []
if args:
arg_names = args_info.args[:len(args)]
for i, arg_name in enumerate(arg_names):
if arg_name in args_to_cast:
new_args.append(
cast_tensor_type(args[i], torch.half, torch.float))
else:
new_args.append(args[i])
# convert the kwargs that need to be processed
new_kwargs = dict()
if kwargs:
for arg_name, arg_value in kwargs.items():
if arg_name in args_to_cast:
new_kwargs[arg_name] = cast_tensor_type(
arg_value, torch.half, torch.float)
else:
new_kwargs[arg_name] = arg_value
# apply converted arguments to the decorated method
if (TORCH_VERSION != 'parrots' and
digit_version(TORCH_VERSION) >= digit_version('1.6.0')):
with autocast(enabled=False):
output = old_func(*new_args, **new_kwargs)
else:
output = old_func(*new_args, **new_kwargs)
# cast the results back to fp32 if necessary
if out_fp16:
output = cast_tensor_type(output, torch.float, torch.half)
return output
return new_func
return force_fp32_wrapper
def allreduce_grads(params, coalesce=True, bucket_size_mb=-1):
warnings.warning(
'"mmcv.runner.fp16_utils.allreduce_grads" is deprecated, and will be '
'removed in v2.8. Please switch to "mmcv.runner.allreduce_grads')
_allreduce_grads(params, coalesce=coalesce, bucket_size_mb=bucket_size_mb)
def wrap_fp16_model(model):
"""Wrap the FP32 model to FP16.
If you are using PyTorch >= 1.6, torch.cuda.amp is used as the
backend, otherwise, original mmcv implementation will be adopted.
For PyTorch >= 1.6, this function will
1. Set fp16 flag inside the model to True.
Otherwise:
1. Convert FP32 model to FP16.
2. Remain some necessary layers to be FP32, e.g., normalization layers.
3. Set `fp16_enabled` flag inside the model to True.
Args:
model (nn.Module): Model in FP32.
"""
if (TORCH_VERSION == 'parrots'
or digit_version(TORCH_VERSION) < digit_version('1.6.0')):
# convert model to fp16
model.half()
# patch the normalization layers to make it work in fp32 mode
patch_norm_fp32(model)
# set `fp16_enabled` flag
for m in model.modules():
if hasattr(m, 'fp16_enabled'):
m.fp16_enabled = True
def patch_norm_fp32(module):
"""Recursively convert normalization layers from FP16 to FP32.
Args:
module (nn.Module): The modules to be converted in FP16.
Returns:
nn.Module: The converted module, the normalization layers have been
converted to FP32.
"""
if isinstance(module, (nn.modules.batchnorm._BatchNorm, nn.GroupNorm)):
module.float()
if isinstance(module, nn.GroupNorm) or torch.__version__ < '1.3':
module.forward = patch_forward_method(module.forward, torch.half,
torch.float)
for child in module.children():
patch_norm_fp32(child)
return module
def patch_forward_method(func, src_type, dst_type, convert_output=True):
"""Patch the forward method of a module.
Args:
func (callable): The original forward method.
src_type (torch.dtype): Type of input arguments to be converted from.
dst_type (torch.dtype): Type of input arguments to be converted to.
convert_output (bool): Whether to convert the output back to src_type.
Returns:
callable: The patched forward method.
"""
def new_forward(*args, **kwargs):
output = func(*cast_tensor_type(args, src_type, dst_type),
**cast_tensor_type(kwargs, src_type, dst_type))
if convert_output:
output = cast_tensor_type(output, dst_type, src_type)
return output
return new_forward
class LossScaler:
"""Class that manages loss scaling in mixed precision training which
supports both dynamic or static mode.
The implementation refers to
https://github.com/NVIDIA/apex/blob/master/apex/fp16_utils/loss_scaler.py.
Indirectly, by supplying ``mode='dynamic'`` for dynamic loss scaling.
It's important to understand how :class:`LossScaler` operates.
Loss scaling is designed to combat the problem of underflowing
gradients encountered at long times when training fp16 networks.
Dynamic loss scaling begins by attempting a very high loss
scale. Ironically, this may result in OVERflowing gradients.
If overflowing gradients are encountered, :class:`FP16_Optimizer` then
skips the update step for this particular iteration/minibatch,
and :class:`LossScaler` adjusts the loss scale to a lower value.
If a certain number of iterations occur without overflowing gradients
detected,:class:`LossScaler` increases the loss scale once more.
In this way :class:`LossScaler` attempts to "ride the edge" of always
using the highest loss scale possible without incurring overflow.
Args:
init_scale (float): Initial loss scale value, default: 2**32.
scale_factor (float): Factor used when adjusting the loss scale.
Default: 2.
mode (str): Loss scaling mode. 'dynamic' or 'static'
scale_window (int): Number of consecutive iterations without an
overflow to wait before increasing the loss scale. Default: 1000.
"""
def __init__(self,
init_scale=2**32,
mode='dynamic',
scale_factor=2.,
scale_window=1000):
self.cur_scale = init_scale
self.cur_iter = 0
assert mode in ('dynamic',
'static'), 'mode can only be dynamic or static'
self.mode = mode
self.last_overflow_iter = -1
self.scale_factor = scale_factor
self.scale_window = scale_window
def has_overflow(self, params):
"""Check if params contain overflow."""
if self.mode != 'dynamic':
return False
for p in params:
if p.grad is not None and LossScaler._has_inf_or_nan(p.grad.data):
return True
return False
def _has_inf_or_nan(x):
"""Check if params contain NaN."""
try:
cpu_sum = float(x.float().sum())
except RuntimeError as instance:
if 'value cannot be converted' not in instance.args[0]:
raise
return True
else:
if cpu_sum == float('inf') or cpu_sum == -float('inf') \
or cpu_sum != cpu_sum:
return True
return False
def update_scale(self, overflow):
"""update the current loss scale value when overflow happens."""
if self.mode != 'dynamic':
return
if overflow:
self.cur_scale = max(self.cur_scale / self.scale_factor, 1)
self.last_overflow_iter = self.cur_iter
else:
if (self.cur_iter - self.last_overflow_iter) % \
self.scale_window == 0:
self.cur_scale *= self.scale_factor
self.cur_iter += 1
def state_dict(self):
"""Returns the state of the scaler as a :class:`dict`."""
return dict(
cur_scale=self.cur_scale,
cur_iter=self.cur_iter,
mode=self.mode,
last_overflow_iter=self.last_overflow_iter,
scale_factor=self.scale_factor,
scale_window=self.scale_window)
def load_state_dict(self, state_dict):
"""Loads the loss_scaler state dict.
Args:
state_dict (dict): scaler state.
"""
self.cur_scale = state_dict['cur_scale']
self.cur_iter = state_dict['cur_iter']
self.mode = state_dict['mode']
self.last_overflow_iter = state_dict['last_overflow_iter']
self.scale_factor = state_dict['scale_factor']
self.scale_window = state_dict['scale_window']
@property
def loss_scale(self):
return self.cur_scale