Spaces:
Paused
Paused
import os | |
from collections import namedtuple | |
from contextlib import closing | |
import torch | |
import tqdm | |
import html | |
import datetime | |
import csv | |
import safetensors.torch | |
import numpy as np | |
from PIL import Image, PngImagePlugin | |
from torch.utils.tensorboard import SummaryWriter | |
from modules import shared, devices, sd_hijack, sd_models, images, sd_samplers, sd_hijack_checkpoint, errors, hashes | |
import modules.textual_inversion.dataset | |
from modules.textual_inversion.learn_schedule import LearnRateScheduler | |
from modules.textual_inversion.image_embedding import embedding_to_b64, embedding_from_b64, insert_image_data_embed, extract_image_data_embed, caption_image_overlay | |
from modules.textual_inversion.logging import save_settings_to_file | |
TextualInversionTemplate = namedtuple("TextualInversionTemplate", ["name", "path"]) | |
textual_inversion_templates = {} | |
def list_textual_inversion_templates(): | |
textual_inversion_templates.clear() | |
for root, _, fns in os.walk(shared.cmd_opts.textual_inversion_templates_dir): | |
for fn in fns: | |
path = os.path.join(root, fn) | |
textual_inversion_templates[fn] = TextualInversionTemplate(fn, path) | |
return textual_inversion_templates | |
class Embedding: | |
def __init__(self, vec, name, step=None): | |
self.vec = vec | |
self.name = name | |
self.step = step | |
self.shape = None | |
self.vectors = 0 | |
self.cached_checksum = None | |
self.sd_checkpoint = None | |
self.sd_checkpoint_name = None | |
self.optimizer_state_dict = None | |
self.filename = None | |
self.hash = None | |
self.shorthash = None | |
def save(self, filename): | |
embedding_data = { | |
"string_to_token": {"*": 265}, | |
"string_to_param": {"*": self.vec}, | |
"name": self.name, | |
"step": self.step, | |
"sd_checkpoint": self.sd_checkpoint, | |
"sd_checkpoint_name": self.sd_checkpoint_name, | |
} | |
torch.save(embedding_data, filename) | |
if shared.opts.save_optimizer_state and self.optimizer_state_dict is not None: | |
optimizer_saved_dict = { | |
'hash': self.checksum(), | |
'optimizer_state_dict': self.optimizer_state_dict, | |
} | |
torch.save(optimizer_saved_dict, f"{filename}.optim") | |
def checksum(self): | |
if self.cached_checksum is not None: | |
return self.cached_checksum | |
def const_hash(a): | |
r = 0 | |
for v in a: | |
r = (r * 281 ^ int(v) * 997) & 0xFFFFFFFF | |
return r | |
self.cached_checksum = f'{const_hash(self.vec.reshape(-1) * 100) & 0xffff:04x}' | |
return self.cached_checksum | |
def set_hash(self, v): | |
self.hash = v | |
self.shorthash = self.hash[0:12] | |
class DirWithTextualInversionEmbeddings: | |
def __init__(self, path): | |
self.path = path | |
self.mtime = None | |
def has_changed(self): | |
if not os.path.isdir(self.path): | |
return False | |
mt = os.path.getmtime(self.path) | |
if self.mtime is None or mt > self.mtime: | |
return True | |
def update(self): | |
if not os.path.isdir(self.path): | |
return | |
self.mtime = os.path.getmtime(self.path) | |
class EmbeddingDatabase: | |
def __init__(self): | |
self.ids_lookup = {} | |
self.word_embeddings = {} | |
self.skipped_embeddings = {} | |
self.expected_shape = -1 | |
self.embedding_dirs = {} | |
self.previously_displayed_embeddings = () | |
def add_embedding_dir(self, path): | |
self.embedding_dirs[path] = DirWithTextualInversionEmbeddings(path) | |
def clear_embedding_dirs(self): | |
self.embedding_dirs.clear() | |
def register_embedding(self, embedding, model): | |
return self.register_embedding_by_name(embedding, model, embedding.name) | |
def register_embedding_by_name(self, embedding, model, name): | |
ids = model.cond_stage_model.tokenize([name])[0] | |
first_id = ids[0] | |
if first_id not in self.ids_lookup: | |
self.ids_lookup[first_id] = [] | |
if name in self.word_embeddings: | |
# remove old one from the lookup list | |
lookup = [x for x in self.ids_lookup[first_id] if x[1].name!=name] | |
else: | |
lookup = self.ids_lookup[first_id] | |
if embedding is not None: | |
lookup += [(ids, embedding)] | |
self.ids_lookup[first_id] = sorted(lookup, key=lambda x: len(x[0]), reverse=True) | |
if embedding is None: | |
# unregister embedding with specified name | |
if name in self.word_embeddings: | |
del self.word_embeddings[name] | |
if len(self.ids_lookup[first_id])==0: | |
del self.ids_lookup[first_id] | |
return None | |
self.word_embeddings[name] = embedding | |
return embedding | |
def get_expected_shape(self): | |
vec = shared.sd_model.cond_stage_model.encode_embedding_init_text(",", 1) | |
return vec.shape[1] | |
def load_from_file(self, path, filename): | |
name, ext = os.path.splitext(filename) | |
ext = ext.upper() | |
if ext in ['.PNG', '.WEBP', '.JXL', '.AVIF']: | |
_, second_ext = os.path.splitext(name) | |
if second_ext.upper() == '.PREVIEW': | |
return | |
embed_image = Image.open(path) | |
if hasattr(embed_image, 'text') and 'sd-ti-embedding' in embed_image.text: | |
data = embedding_from_b64(embed_image.text['sd-ti-embedding']) | |
name = data.get('name', name) | |
else: | |
data = extract_image_data_embed(embed_image) | |
if data: | |
name = data.get('name', name) | |
else: | |
# if data is None, means this is not an embeding, just a preview image | |
return | |
elif ext in ['.BIN', '.PT']: | |
data = torch.load(path, map_location="cpu") | |
elif ext in ['.SAFETENSORS']: | |
data = safetensors.torch.load_file(path, device="cpu") | |
else: | |
return | |
# textual inversion embeddings | |
if 'string_to_param' in data: | |
param_dict = data['string_to_param'] | |
param_dict = getattr(param_dict, '_parameters', param_dict) # fix for torch 1.12.1 loading saved file from torch 1.11 | |
assert len(param_dict) == 1, 'embedding file has multiple terms in it' | |
emb = next(iter(param_dict.items()))[1] | |
vec = emb.detach().to(devices.device, dtype=torch.float32) | |
shape = vec.shape[-1] | |
vectors = vec.shape[0] | |
elif type(data) == dict and 'clip_g' in data and 'clip_l' in data: # SDXL embedding | |
vec = {k: v.detach().to(devices.device, dtype=torch.float32) for k, v in data.items()} | |
shape = data['clip_g'].shape[-1] + data['clip_l'].shape[-1] | |
vectors = data['clip_g'].shape[0] | |
elif type(data) == dict and type(next(iter(data.values()))) == torch.Tensor: # diffuser concepts | |
assert len(data.keys()) == 1, 'embedding file has multiple terms in it' | |
emb = next(iter(data.values())) | |
if len(emb.shape) == 1: | |
emb = emb.unsqueeze(0) | |
vec = emb.detach().to(devices.device, dtype=torch.float32) | |
shape = vec.shape[-1] | |
vectors = vec.shape[0] | |
else: | |
raise Exception(f"Couldn't identify {filename} as neither textual inversion embedding nor diffuser concept.") | |
embedding = Embedding(vec, name) | |
embedding.step = data.get('step', None) | |
embedding.sd_checkpoint = data.get('sd_checkpoint', None) | |
embedding.sd_checkpoint_name = data.get('sd_checkpoint_name', None) | |
embedding.vectors = vectors | |
embedding.shape = shape | |
embedding.filename = path | |
embedding.set_hash(hashes.sha256(embedding.filename, "textual_inversion/" + name) or '') | |
if self.expected_shape == -1 or self.expected_shape == embedding.shape: | |
self.register_embedding(embedding, shared.sd_model) | |
else: | |
self.skipped_embeddings[name] = embedding | |
def load_from_dir(self, embdir): | |
if not os.path.isdir(embdir.path): | |
return | |
for root, _, fns in os.walk(embdir.path, followlinks=True): | |
for fn in fns: | |
try: | |
fullfn = os.path.join(root, fn) | |
if os.stat(fullfn).st_size == 0: | |
continue | |
self.load_from_file(fullfn, fn) | |
except Exception: | |
errors.report(f"Error loading embedding {fn}", exc_info=True) | |
continue | |
def load_textual_inversion_embeddings(self, force_reload=False): | |
if not force_reload: | |
need_reload = False | |
for embdir in self.embedding_dirs.values(): | |
if embdir.has_changed(): | |
need_reload = True | |
break | |
if not need_reload: | |
return | |
self.ids_lookup.clear() | |
self.word_embeddings.clear() | |
self.skipped_embeddings.clear() | |
self.expected_shape = self.get_expected_shape() | |
for embdir in self.embedding_dirs.values(): | |
self.load_from_dir(embdir) | |
embdir.update() | |
# re-sort word_embeddings because load_from_dir may not load in alphabetic order. | |
# using a temporary copy so we don't reinitialize self.word_embeddings in case other objects have a reference to it. | |
sorted_word_embeddings = {e.name: e for e in sorted(self.word_embeddings.values(), key=lambda e: e.name.lower())} | |
self.word_embeddings.clear() | |
self.word_embeddings.update(sorted_word_embeddings) | |
displayed_embeddings = (tuple(self.word_embeddings.keys()), tuple(self.skipped_embeddings.keys())) | |
if shared.opts.textual_inversion_print_at_load and self.previously_displayed_embeddings != displayed_embeddings: | |
self.previously_displayed_embeddings = displayed_embeddings | |
print(f"Textual inversion embeddings loaded({len(self.word_embeddings)}): {', '.join(self.word_embeddings.keys())}") | |
if self.skipped_embeddings: | |
print(f"Textual inversion embeddings skipped({len(self.skipped_embeddings)}): {', '.join(self.skipped_embeddings.keys())}") | |
def find_embedding_at_position(self, tokens, offset): | |
token = tokens[offset] | |
possible_matches = self.ids_lookup.get(token, None) | |
if possible_matches is None: | |
return None, None | |
for ids, embedding in possible_matches: | |
if tokens[offset:offset + len(ids)] == ids: | |
return embedding, len(ids) | |
return None, None | |
def create_embedding(name, num_vectors_per_token, overwrite_old, init_text='*'): | |
cond_model = shared.sd_model.cond_stage_model | |
with devices.autocast(): | |
cond_model([""]) # will send cond model to GPU if lowvram/medvram is active | |
#cond_model expects at least some text, so we provide '*' as backup. | |
embedded = cond_model.encode_embedding_init_text(init_text or '*', num_vectors_per_token) | |
vec = torch.zeros((num_vectors_per_token, embedded.shape[1]), device=devices.device) | |
#Only copy if we provided an init_text, otherwise keep vectors as zeros | |
if init_text: | |
for i in range(num_vectors_per_token): | |
vec[i] = embedded[i * int(embedded.shape[0]) // num_vectors_per_token] | |
# Remove illegal characters from name. | |
name = "".join( x for x in name if (x.isalnum() or x in "._- ")) | |
fn = os.path.join(shared.cmd_opts.embeddings_dir, f"{name}.pt") | |
if not overwrite_old: | |
assert not os.path.exists(fn), f"file {fn} already exists" | |
embedding = Embedding(vec, name) | |
embedding.step = 0 | |
embedding.save(fn) | |
return fn | |
def write_loss(log_directory, filename, step, epoch_len, values): | |
if shared.opts.training_write_csv_every == 0: | |
return | |
if step % shared.opts.training_write_csv_every != 0: | |
return | |
write_csv_header = False if os.path.exists(os.path.join(log_directory, filename)) else True | |
with open(os.path.join(log_directory, filename), "a+", newline='') as fout: | |
csv_writer = csv.DictWriter(fout, fieldnames=["step", "epoch", "epoch_step", *(values.keys())]) | |
if write_csv_header: | |
csv_writer.writeheader() | |
epoch = (step - 1) // epoch_len | |
epoch_step = (step - 1) % epoch_len | |
csv_writer.writerow({ | |
"step": step, | |
"epoch": epoch, | |
"epoch_step": epoch_step, | |
**values, | |
}) | |
def tensorboard_setup(log_directory): | |
os.makedirs(os.path.join(log_directory, "tensorboard"), exist_ok=True) | |
return SummaryWriter( | |
log_dir=os.path.join(log_directory, "tensorboard"), | |
flush_secs=shared.opts.training_tensorboard_flush_every) | |
def tensorboard_add(tensorboard_writer, loss, global_step, step, learn_rate, epoch_num): | |
tensorboard_add_scaler(tensorboard_writer, "Loss/train", loss, global_step) | |
tensorboard_add_scaler(tensorboard_writer, f"Loss/train/epoch-{epoch_num}", loss, step) | |
tensorboard_add_scaler(tensorboard_writer, "Learn rate/train", learn_rate, global_step) | |
tensorboard_add_scaler(tensorboard_writer, f"Learn rate/train/epoch-{epoch_num}", learn_rate, step) | |
def tensorboard_add_scaler(tensorboard_writer, tag, value, step): | |
tensorboard_writer.add_scalar(tag=tag, | |
scalar_value=value, global_step=step) | |
def tensorboard_add_image(tensorboard_writer, tag, pil_image, step): | |
# Convert a pil image to a torch tensor | |
img_tensor = torch.as_tensor(np.array(pil_image, copy=True)) | |
img_tensor = img_tensor.view(pil_image.size[1], pil_image.size[0], | |
len(pil_image.getbands())) | |
img_tensor = img_tensor.permute((2, 0, 1)) | |
tensorboard_writer.add_image(tag, img_tensor, global_step=step) | |
def validate_train_inputs(model_name, learn_rate, batch_size, gradient_step, data_root, template_file, template_filename, steps, save_model_every, create_image_every, log_directory, name="embedding"): | |
assert model_name, f"{name} not selected" | |
assert learn_rate, "Learning rate is empty or 0" | |
assert isinstance(batch_size, int), "Batch size must be integer" | |
assert batch_size > 0, "Batch size must be positive" | |
assert isinstance(gradient_step, int), "Gradient accumulation step must be integer" | |
assert gradient_step > 0, "Gradient accumulation step must be positive" | |
assert data_root, "Dataset directory is empty" | |
assert os.path.isdir(data_root), "Dataset directory doesn't exist" | |
assert os.listdir(data_root), "Dataset directory is empty" | |
assert template_filename, "Prompt template file not selected" | |
assert template_file, f"Prompt template file {template_filename} not found" | |
assert os.path.isfile(template_file.path), f"Prompt template file {template_filename} doesn't exist" | |
assert steps, "Max steps is empty or 0" | |
assert isinstance(steps, int), "Max steps must be integer" | |
assert steps > 0, "Max steps must be positive" | |
assert isinstance(save_model_every, int), "Save {name} must be integer" | |
assert save_model_every >= 0, "Save {name} must be positive or 0" | |
assert isinstance(create_image_every, int), "Create image must be integer" | |
assert create_image_every >= 0, "Create image must be positive or 0" | |
if save_model_every or create_image_every: | |
assert log_directory, "Log directory is empty" | |
def train_embedding(id_task, embedding_name, learn_rate, batch_size, gradient_step, data_root, log_directory, training_width, training_height, varsize, steps, clip_grad_mode, clip_grad_value, shuffle_tags, tag_drop_out, latent_sampling_method, use_weight, create_image_every, save_embedding_every, template_filename, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height): | |
from modules import processing | |
save_embedding_every = save_embedding_every or 0 | |
create_image_every = create_image_every or 0 | |
template_file = textual_inversion_templates.get(template_filename, None) | |
validate_train_inputs(embedding_name, learn_rate, batch_size, gradient_step, data_root, template_file, template_filename, steps, save_embedding_every, create_image_every, log_directory, name="embedding") | |
template_file = template_file.path | |
shared.state.job = "train-embedding" | |
shared.state.textinfo = "Initializing textual inversion training..." | |
shared.state.job_count = steps | |
filename = os.path.join(shared.cmd_opts.embeddings_dir, f'{embedding_name}.pt') | |
log_directory = os.path.join(log_directory, datetime.datetime.now().strftime("%Y-%m-%d"), embedding_name) | |
unload = shared.opts.unload_models_when_training | |
if save_embedding_every > 0: | |
embedding_dir = os.path.join(log_directory, "embeddings") | |
os.makedirs(embedding_dir, exist_ok=True) | |
else: | |
embedding_dir = None | |
if create_image_every > 0: | |
images_dir = os.path.join(log_directory, "images") | |
os.makedirs(images_dir, exist_ok=True) | |
else: | |
images_dir = None | |
if create_image_every > 0 and save_image_with_stored_embedding: | |
images_embeds_dir = os.path.join(log_directory, "image_embeddings") | |
os.makedirs(images_embeds_dir, exist_ok=True) | |
else: | |
images_embeds_dir = None | |
hijack = sd_hijack.model_hijack | |
embedding = hijack.embedding_db.word_embeddings[embedding_name] | |
checkpoint = sd_models.select_checkpoint() | |
initial_step = embedding.step or 0 | |
if initial_step >= steps: | |
shared.state.textinfo = "Model has already been trained beyond specified max steps" | |
return embedding, filename | |
scheduler = LearnRateScheduler(learn_rate, steps, initial_step) | |
clip_grad = torch.nn.utils.clip_grad_value_ if clip_grad_mode == "value" else \ | |
torch.nn.utils.clip_grad_norm_ if clip_grad_mode == "norm" else \ | |
None | |
if clip_grad: | |
clip_grad_sched = LearnRateScheduler(clip_grad_value, steps, initial_step, verbose=False) | |
# dataset loading may take a while, so input validations and early returns should be done before this | |
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..." | |
old_parallel_processing_allowed = shared.parallel_processing_allowed | |
if shared.opts.training_enable_tensorboard: | |
tensorboard_writer = tensorboard_setup(log_directory) | |
pin_memory = shared.opts.pin_memory | |
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=embedding_name, model=shared.sd_model, cond_model=shared.sd_model.cond_stage_model, device=devices.device, template_file=template_file, batch_size=batch_size, gradient_step=gradient_step, shuffle_tags=shuffle_tags, tag_drop_out=tag_drop_out, latent_sampling_method=latent_sampling_method, varsize=varsize, use_weight=use_weight) | |
if shared.opts.save_training_settings_to_txt: | |
save_settings_to_file(log_directory, {**dict(model_name=checkpoint.model_name, model_hash=checkpoint.shorthash, num_of_dataset_images=len(ds), num_vectors_per_token=len(embedding.vec)), **locals()}) | |
latent_sampling_method = ds.latent_sampling_method | |
dl = modules.textual_inversion.dataset.PersonalizedDataLoader(ds, latent_sampling_method=latent_sampling_method, batch_size=ds.batch_size, pin_memory=pin_memory) | |
if unload: | |
shared.parallel_processing_allowed = False | |
shared.sd_model.first_stage_model.to(devices.cpu) | |
embedding.vec.requires_grad = True | |
optimizer = torch.optim.AdamW([embedding.vec], lr=scheduler.learn_rate, weight_decay=0.0) | |
if shared.opts.save_optimizer_state: | |
optimizer_state_dict = None | |
if os.path.exists(f"{filename}.optim"): | |
optimizer_saved_dict = torch.load(f"{filename}.optim", map_location='cpu') | |
if embedding.checksum() == optimizer_saved_dict.get('hash', None): | |
optimizer_state_dict = optimizer_saved_dict.get('optimizer_state_dict', None) | |
if optimizer_state_dict is not None: | |
optimizer.load_state_dict(optimizer_state_dict) | |
print("Loaded existing optimizer from checkpoint") | |
else: | |
print("No saved optimizer exists in checkpoint") | |
scaler = torch.cuda.amp.GradScaler() | |
batch_size = ds.batch_size | |
gradient_step = ds.gradient_step | |
# n steps = batch_size * gradient_step * n image processed | |
steps_per_epoch = len(ds) // batch_size // gradient_step | |
max_steps_per_epoch = len(ds) // batch_size - (len(ds) // batch_size) % gradient_step | |
loss_step = 0 | |
_loss_step = 0 #internal | |
last_saved_file = "<none>" | |
last_saved_image = "<none>" | |
forced_filename = "<none>" | |
embedding_yet_to_be_embedded = False | |
is_training_inpainting_model = shared.sd_model.model.conditioning_key in {'hybrid', 'concat'} | |
img_c = None | |
pbar = tqdm.tqdm(total=steps - initial_step) | |
try: | |
sd_hijack_checkpoint.add() | |
for _ in range((steps-initial_step) * gradient_step): | |
if scheduler.finished: | |
break | |
if shared.state.interrupted: | |
break | |
for j, batch in enumerate(dl): | |
# works as a drop_last=True for gradient accumulation | |
if j == max_steps_per_epoch: | |
break | |
scheduler.apply(optimizer, embedding.step) | |
if scheduler.finished: | |
break | |
if shared.state.interrupted: | |
break | |
if clip_grad: | |
clip_grad_sched.step(embedding.step) | |
with devices.autocast(): | |
x = batch.latent_sample.to(devices.device, non_blocking=pin_memory) | |
if use_weight: | |
w = batch.weight.to(devices.device, non_blocking=pin_memory) | |
c = shared.sd_model.cond_stage_model(batch.cond_text) | |
if is_training_inpainting_model: | |
if img_c is None: | |
img_c = processing.txt2img_image_conditioning(shared.sd_model, c, training_width, training_height) | |
cond = {"c_concat": [img_c], "c_crossattn": [c]} | |
else: | |
cond = c | |
if use_weight: | |
loss = shared.sd_model.weighted_forward(x, cond, w)[0] / gradient_step | |
del w | |
else: | |
loss = shared.sd_model.forward(x, cond)[0] / gradient_step | |
del x | |
_loss_step += loss.item() | |
scaler.scale(loss).backward() | |
# go back until we reach gradient accumulation steps | |
if (j + 1) % gradient_step != 0: | |
continue | |
if clip_grad: | |
clip_grad(embedding.vec, clip_grad_sched.learn_rate) | |
scaler.step(optimizer) | |
scaler.update() | |
embedding.step += 1 | |
pbar.update() | |
optimizer.zero_grad(set_to_none=True) | |
loss_step = _loss_step | |
_loss_step = 0 | |
steps_done = embedding.step + 1 | |
epoch_num = embedding.step // steps_per_epoch | |
epoch_step = embedding.step % steps_per_epoch | |
description = f"Training textual inversion [Epoch {epoch_num}: {epoch_step+1}/{steps_per_epoch}] loss: {loss_step:.7f}" | |
pbar.set_description(description) | |
if embedding_dir is not None and steps_done % save_embedding_every == 0: | |
# Before saving, change name to match current checkpoint. | |
embedding_name_every = f'{embedding_name}-{steps_done}' | |
last_saved_file = os.path.join(embedding_dir, f'{embedding_name_every}.pt') | |
save_embedding(embedding, optimizer, checkpoint, embedding_name_every, last_saved_file, remove_cached_checksum=True) | |
embedding_yet_to_be_embedded = True | |
write_loss(log_directory, "textual_inversion_loss.csv", embedding.step, steps_per_epoch, { | |
"loss": f"{loss_step:.7f}", | |
"learn_rate": scheduler.learn_rate | |
}) | |
if images_dir is not None and steps_done % create_image_every == 0: | |
forced_filename = f'{embedding_name}-{steps_done}' | |
last_saved_image = os.path.join(images_dir, forced_filename) | |
shared.sd_model.first_stage_model.to(devices.device) | |
p = processing.StableDiffusionProcessingTxt2Img( | |
sd_model=shared.sd_model, | |
do_not_save_grid=True, | |
do_not_save_samples=True, | |
do_not_reload_embeddings=True, | |
) | |
if preview_from_txt2img: | |
p.prompt = preview_prompt | |
p.negative_prompt = preview_negative_prompt | |
p.steps = preview_steps | |
p.sampler_name = sd_samplers.samplers[preview_sampler_index].name | |
p.cfg_scale = preview_cfg_scale | |
p.seed = preview_seed | |
p.width = preview_width | |
p.height = preview_height | |
else: | |
p.prompt = batch.cond_text[0] | |
p.steps = 20 | |
p.width = training_width | |
p.height = training_height | |
preview_text = p.prompt | |
with closing(p): | |
processed = processing.process_images(p) | |
image = processed.images[0] if len(processed.images) > 0 else None | |
if unload: | |
shared.sd_model.first_stage_model.to(devices.cpu) | |
if image is not None: | |
shared.state.assign_current_image(image) | |
last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False) | |
last_saved_image += f", prompt: {preview_text}" | |
if shared.opts.training_enable_tensorboard and shared.opts.training_tensorboard_save_images: | |
tensorboard_add_image(tensorboard_writer, f"Validation at epoch {epoch_num}", image, embedding.step) | |
if save_image_with_stored_embedding and os.path.exists(last_saved_file) and embedding_yet_to_be_embedded: | |
last_saved_image_chunks = os.path.join(images_embeds_dir, f'{embedding_name}-{steps_done}.png') | |
info = PngImagePlugin.PngInfo() | |
data = torch.load(last_saved_file) | |
info.add_text("sd-ti-embedding", embedding_to_b64(data)) | |
title = f"<{data.get('name', '???')}>" | |
try: | |
vectorSize = list(data['string_to_param'].values())[0].shape[0] | |
except Exception: | |
vectorSize = '?' | |
checkpoint = sd_models.select_checkpoint() | |
footer_left = checkpoint.model_name | |
footer_mid = f'[{checkpoint.shorthash}]' | |
footer_right = f'{vectorSize}v {steps_done}s' | |
captioned_image = caption_image_overlay(image, title, footer_left, footer_mid, footer_right) | |
captioned_image = insert_image_data_embed(captioned_image, data) | |
captioned_image.save(last_saved_image_chunks, "PNG", pnginfo=info) | |
embedding_yet_to_be_embedded = False | |
last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False) | |
last_saved_image += f", prompt: {preview_text}" | |
shared.state.job_no = embedding.step | |
shared.state.textinfo = f""" | |
<p> | |
Loss: {loss_step:.7f}<br/> | |
Step: {steps_done}<br/> | |
Last prompt: {html.escape(batch.cond_text[0])}<br/> | |
Last saved embedding: {html.escape(last_saved_file)}<br/> | |
Last saved image: {html.escape(last_saved_image)}<br/> | |
</p> | |
""" | |
filename = os.path.join(shared.cmd_opts.embeddings_dir, f'{embedding_name}.pt') | |
save_embedding(embedding, optimizer, checkpoint, embedding_name, filename, remove_cached_checksum=True) | |
except Exception: | |
errors.report("Error training embedding", exc_info=True) | |
finally: | |
pbar.leave = False | |
pbar.close() | |
shared.sd_model.first_stage_model.to(devices.device) | |
shared.parallel_processing_allowed = old_parallel_processing_allowed | |
sd_hijack_checkpoint.remove() | |
return embedding, filename | |
def save_embedding(embedding, optimizer, checkpoint, embedding_name, filename, remove_cached_checksum=True): | |
old_embedding_name = embedding.name | |
old_sd_checkpoint = embedding.sd_checkpoint if hasattr(embedding, "sd_checkpoint") else None | |
old_sd_checkpoint_name = embedding.sd_checkpoint_name if hasattr(embedding, "sd_checkpoint_name") else None | |
old_cached_checksum = embedding.cached_checksum if hasattr(embedding, "cached_checksum") else None | |
try: | |
embedding.sd_checkpoint = checkpoint.shorthash | |
embedding.sd_checkpoint_name = checkpoint.model_name | |
if remove_cached_checksum: | |
embedding.cached_checksum = None | |
embedding.name = embedding_name | |
embedding.optimizer_state_dict = optimizer.state_dict() | |
embedding.save(filename) | |
except: | |
embedding.sd_checkpoint = old_sd_checkpoint | |
embedding.sd_checkpoint_name = old_sd_checkpoint_name | |
embedding.name = old_embedding_name | |
embedding.cached_checksum = old_cached_checksum | |
raise | |