File size: 18,084 Bytes
c9ea4f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
# this file is adapted from https://github.com/victorca25/iNNfer

from collections import OrderedDict
import math
import torch
import torch.nn as nn
import torch.nn.functional as F


####################
# RRDBNet Generator
####################

class RRDBNet(nn.Module):
    def __init__(self, in_nc, out_nc, nf, nb, nr=3, gc=32, upscale=4, norm_type=None,
            act_type='leakyrelu', mode='CNA', upsample_mode='upconv', convtype='Conv2D',
            finalact=None, gaussian_noise=False, plus=False):
        super(RRDBNet, self).__init__()
        n_upscale = int(math.log(upscale, 2))
        if upscale == 3:
            n_upscale = 1

        self.resrgan_scale = 0
        if in_nc % 16 == 0:
            self.resrgan_scale = 1
        elif in_nc != 4 and in_nc % 4 == 0:
            self.resrgan_scale = 2

        fea_conv = conv_block(in_nc, nf, kernel_size=3, norm_type=None, act_type=None, convtype=convtype)
        rb_blocks = [RRDB(nf, nr, kernel_size=3, gc=32, stride=1, bias=1, pad_type='zero',
            norm_type=norm_type, act_type=act_type, mode='CNA', convtype=convtype,
            gaussian_noise=gaussian_noise, plus=plus) for _ in range(nb)]
        LR_conv = conv_block(nf, nf, kernel_size=3, norm_type=norm_type, act_type=None, mode=mode, convtype=convtype)

        if upsample_mode == 'upconv':
            upsample_block = upconv_block
        elif upsample_mode == 'pixelshuffle':
            upsample_block = pixelshuffle_block
        else:
            raise NotImplementedError(f'upsample mode [{upsample_mode}] is not found')
        if upscale == 3:
            upsampler = upsample_block(nf, nf, 3, act_type=act_type, convtype=convtype)
        else:
            upsampler = [upsample_block(nf, nf, act_type=act_type, convtype=convtype) for _ in range(n_upscale)]
        HR_conv0 = conv_block(nf, nf, kernel_size=3, norm_type=None, act_type=act_type, convtype=convtype)
        HR_conv1 = conv_block(nf, out_nc, kernel_size=3, norm_type=None, act_type=None, convtype=convtype)

        outact = act(finalact) if finalact else None

        self.model = sequential(fea_conv, ShortcutBlock(sequential(*rb_blocks, LR_conv)),
            *upsampler, HR_conv0, HR_conv1, outact)

    def forward(self, x, outm=None):
        if self.resrgan_scale == 1:
            feat = pixel_unshuffle(x, scale=4)
        elif self.resrgan_scale == 2:
            feat = pixel_unshuffle(x, scale=2)
        else:
            feat = x

        return self.model(feat)


class RRDB(nn.Module):
    """
    Residual in Residual Dense Block
    (ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks)
    """

    def __init__(self, nf, nr=3, kernel_size=3, gc=32, stride=1, bias=1, pad_type='zero',
            norm_type=None, act_type='leakyrelu', mode='CNA', convtype='Conv2D',
            spectral_norm=False, gaussian_noise=False, plus=False):
        super(RRDB, self).__init__()
        # This is for backwards compatibility with existing models
        if nr == 3:
            self.RDB1 = ResidualDenseBlock_5C(nf, kernel_size, gc, stride, bias, pad_type,
                    norm_type, act_type, mode, convtype, spectral_norm=spectral_norm,
                    gaussian_noise=gaussian_noise, plus=plus)
            self.RDB2 = ResidualDenseBlock_5C(nf, kernel_size, gc, stride, bias, pad_type,
                    norm_type, act_type, mode, convtype, spectral_norm=spectral_norm,
                    gaussian_noise=gaussian_noise, plus=plus)
            self.RDB3 = ResidualDenseBlock_5C(nf, kernel_size, gc, stride, bias, pad_type,
                    norm_type, act_type, mode, convtype, spectral_norm=spectral_norm,
                    gaussian_noise=gaussian_noise, plus=plus)
        else:
            RDB_list = [ResidualDenseBlock_5C(nf, kernel_size, gc, stride, bias, pad_type,
                                              norm_type, act_type, mode, convtype, spectral_norm=spectral_norm,
                                              gaussian_noise=gaussian_noise, plus=plus) for _ in range(nr)]
            self.RDBs = nn.Sequential(*RDB_list)

    def forward(self, x):
        if hasattr(self, 'RDB1'):
            out = self.RDB1(x)
            out = self.RDB2(out)
            out = self.RDB3(out)
        else:
            out = self.RDBs(x)
        return out * 0.2 + x


class ResidualDenseBlock_5C(nn.Module):
    """
    Residual Dense Block
    The core module of paper: (Residual Dense Network for Image Super-Resolution, CVPR 18)
    Modified options that can be used:
        - "Partial Convolution based Padding" arXiv:1811.11718
        - "Spectral normalization" arXiv:1802.05957
        - "ICASSP 2020 - ESRGAN+ : Further Improving ESRGAN" N. C.
            {Rakotonirina} and A. {Rasoanaivo}
    """

    def __init__(self, nf=64, kernel_size=3, gc=32, stride=1, bias=1, pad_type='zero',
            norm_type=None, act_type='leakyrelu', mode='CNA', convtype='Conv2D',
            spectral_norm=False, gaussian_noise=False, plus=False):
        super(ResidualDenseBlock_5C, self).__init__()

        self.noise = GaussianNoise() if gaussian_noise else None
        self.conv1x1 = conv1x1(nf, gc) if plus else None

        self.conv1 = conv_block(nf, gc, kernel_size, stride, bias=bias, pad_type=pad_type,
            norm_type=norm_type, act_type=act_type, mode=mode, convtype=convtype,
            spectral_norm=spectral_norm)
        self.conv2 = conv_block(nf+gc, gc, kernel_size, stride, bias=bias, pad_type=pad_type,
            norm_type=norm_type, act_type=act_type, mode=mode, convtype=convtype,
            spectral_norm=spectral_norm)
        self.conv3 = conv_block(nf+2*gc, gc, kernel_size, stride, bias=bias, pad_type=pad_type,
            norm_type=norm_type, act_type=act_type, mode=mode, convtype=convtype,
            spectral_norm=spectral_norm)
        self.conv4 = conv_block(nf+3*gc, gc, kernel_size, stride, bias=bias, pad_type=pad_type,
            norm_type=norm_type, act_type=act_type, mode=mode, convtype=convtype,
            spectral_norm=spectral_norm)
        if mode == 'CNA':
            last_act = None
        else:
            last_act = act_type
        self.conv5 = conv_block(nf+4*gc, nf, 3, stride, bias=bias, pad_type=pad_type,
            norm_type=norm_type, act_type=last_act, mode=mode, convtype=convtype,
            spectral_norm=spectral_norm)

    def forward(self, x):
        x1 = self.conv1(x)
        x2 = self.conv2(torch.cat((x, x1), 1))
        if self.conv1x1:
            x2 = x2 + self.conv1x1(x)
        x3 = self.conv3(torch.cat((x, x1, x2), 1))
        x4 = self.conv4(torch.cat((x, x1, x2, x3), 1))
        if self.conv1x1:
            x4 = x4 + x2
        x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
        if self.noise:
            return self.noise(x5.mul(0.2) + x)
        else:
            return x5 * 0.2 + x


####################
# ESRGANplus
####################

class GaussianNoise(nn.Module):
    def __init__(self, sigma=0.1, is_relative_detach=False):
        super().__init__()
        self.sigma = sigma
        self.is_relative_detach = is_relative_detach
        self.noise = torch.tensor(0, dtype=torch.float)

    def forward(self, x):
        if self.training and self.sigma != 0:
            self.noise = self.noise.to(x.device)
            scale = self.sigma * x.detach() if self.is_relative_detach else self.sigma * x
            sampled_noise = self.noise.repeat(*x.size()).normal_() * scale
            x = x + sampled_noise
        return x

def conv1x1(in_planes, out_planes, stride=1):
    return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)


####################
# SRVGGNetCompact
####################

class SRVGGNetCompact(nn.Module):
    """A compact VGG-style network structure for super-resolution.
    This class is copied from https://github.com/xinntao/Real-ESRGAN
    """

    def __init__(self, num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=16, upscale=4, act_type='prelu'):
        super(SRVGGNetCompact, self).__init__()
        self.num_in_ch = num_in_ch
        self.num_out_ch = num_out_ch
        self.num_feat = num_feat
        self.num_conv = num_conv
        self.upscale = upscale
        self.act_type = act_type

        self.body = nn.ModuleList()
        # the first conv
        self.body.append(nn.Conv2d(num_in_ch, num_feat, 3, 1, 1))
        # the first activation
        if act_type == 'relu':
            activation = nn.ReLU(inplace=True)
        elif act_type == 'prelu':
            activation = nn.PReLU(num_parameters=num_feat)
        elif act_type == 'leakyrelu':
            activation = nn.LeakyReLU(negative_slope=0.1, inplace=True)
        self.body.append(activation)

        # the body structure
        for _ in range(num_conv):
            self.body.append(nn.Conv2d(num_feat, num_feat, 3, 1, 1))
            # activation
            if act_type == 'relu':
                activation = nn.ReLU(inplace=True)
            elif act_type == 'prelu':
                activation = nn.PReLU(num_parameters=num_feat)
            elif act_type == 'leakyrelu':
                activation = nn.LeakyReLU(negative_slope=0.1, inplace=True)
            self.body.append(activation)

        # the last conv
        self.body.append(nn.Conv2d(num_feat, num_out_ch * upscale * upscale, 3, 1, 1))
        # upsample
        self.upsampler = nn.PixelShuffle(upscale)

    def forward(self, x):
        out = x
        for i in range(0, len(self.body)):
            out = self.body[i](out)

        out = self.upsampler(out)
        # add the nearest upsampled image, so that the network learns the residual
        base = F.interpolate(x, scale_factor=self.upscale, mode='nearest')
        out += base
        return out


####################
# Upsampler
####################

class Upsample(nn.Module):
    r"""Upsamples a given multi-channel 1D (temporal), 2D (spatial) or 3D (volumetric) data.
    The input data is assumed to be of the form
    `minibatch x channels x [optional depth] x [optional height] x width`.
    """

    def __init__(self, size=None, scale_factor=None, mode="nearest", align_corners=None):
        super(Upsample, self).__init__()
        if isinstance(scale_factor, tuple):
            self.scale_factor = tuple(float(factor) for factor in scale_factor)
        else:
            self.scale_factor = float(scale_factor) if scale_factor else None
        self.mode = mode
        self.size = size
        self.align_corners = align_corners

    def forward(self, x):
        return nn.functional.interpolate(x, size=self.size, scale_factor=self.scale_factor, mode=self.mode, align_corners=self.align_corners)

    def extra_repr(self):
        if self.scale_factor is not None:
            info = f'scale_factor={self.scale_factor}'
        else:
            info = f'size={self.size}'
        info += f', mode={self.mode}'
        return info


def pixel_unshuffle(x, scale):
    """ Pixel unshuffle.
    Args:
        x (Tensor): Input feature with shape (b, c, hh, hw).
        scale (int): Downsample ratio.
    Returns:
        Tensor: the pixel unshuffled feature.
    """
    b, c, hh, hw = x.size()
    out_channel = c * (scale**2)
    assert hh % scale == 0 and hw % scale == 0
    h = hh // scale
    w = hw // scale
    x_view = x.view(b, c, h, scale, w, scale)
    return x_view.permute(0, 1, 3, 5, 2, 4).reshape(b, out_channel, h, w)


def pixelshuffle_block(in_nc, out_nc, upscale_factor=2, kernel_size=3, stride=1, bias=True,
                        pad_type='zero', norm_type=None, act_type='relu', convtype='Conv2D'):
    """
    Pixel shuffle layer
    (Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional
    Neural Network, CVPR17)
    """
    conv = conv_block(in_nc, out_nc * (upscale_factor ** 2), kernel_size, stride, bias=bias,
                        pad_type=pad_type, norm_type=None, act_type=None, convtype=convtype)
    pixel_shuffle = nn.PixelShuffle(upscale_factor)

    n = norm(norm_type, out_nc) if norm_type else None
    a = act(act_type) if act_type else None
    return sequential(conv, pixel_shuffle, n, a)


def upconv_block(in_nc, out_nc, upscale_factor=2, kernel_size=3, stride=1, bias=True,
                pad_type='zero', norm_type=None, act_type='relu', mode='nearest', convtype='Conv2D'):
    """ Upconv layer """
    upscale_factor = (1, upscale_factor, upscale_factor) if convtype == 'Conv3D' else upscale_factor
    upsample = Upsample(scale_factor=upscale_factor, mode=mode)
    conv = conv_block(in_nc, out_nc, kernel_size, stride, bias=bias,
                        pad_type=pad_type, norm_type=norm_type, act_type=act_type, convtype=convtype)
    return sequential(upsample, conv)








####################
# Basic blocks
####################


def make_layer(basic_block, num_basic_block, **kwarg):
    """Make layers by stacking the same blocks.
    Args:
        basic_block (nn.module): nn.module class for basic block. (block)
        num_basic_block (int): number of blocks. (n_layers)
    Returns:
        nn.Sequential: Stacked blocks in nn.Sequential.
    """
    layers = []
    for _ in range(num_basic_block):
        layers.append(basic_block(**kwarg))
    return nn.Sequential(*layers)


def act(act_type, inplace=True, neg_slope=0.2, n_prelu=1, beta=1.0):
    """ activation helper """
    act_type = act_type.lower()
    if act_type == 'relu':
        layer = nn.ReLU(inplace)
    elif act_type in ('leakyrelu', 'lrelu'):
        layer = nn.LeakyReLU(neg_slope, inplace)
    elif act_type == 'prelu':
        layer = nn.PReLU(num_parameters=n_prelu, init=neg_slope)
    elif act_type == 'tanh':  # [-1, 1] range output
        layer = nn.Tanh()
    elif act_type == 'sigmoid':  # [0, 1] range output
        layer = nn.Sigmoid()
    else:
        raise NotImplementedError(f'activation layer [{act_type}] is not found')
    return layer


class Identity(nn.Module):
    def __init__(self, *kwargs):
        super(Identity, self).__init__()

    def forward(self, x, *kwargs):
        return x


def norm(norm_type, nc):
    """ Return a normalization layer """
    norm_type = norm_type.lower()
    if norm_type == 'batch':
        layer = nn.BatchNorm2d(nc, affine=True)
    elif norm_type == 'instance':
        layer = nn.InstanceNorm2d(nc, affine=False)
    elif norm_type == 'none':
        def norm_layer(x): return Identity()
    else:
        raise NotImplementedError(f'normalization layer [{norm_type}] is not found')
    return layer


def pad(pad_type, padding):
    """ padding layer helper """
    pad_type = pad_type.lower()
    if padding == 0:
        return None
    if pad_type == 'reflect':
        layer = nn.ReflectionPad2d(padding)
    elif pad_type == 'replicate':
        layer = nn.ReplicationPad2d(padding)
    elif pad_type == 'zero':
        layer = nn.ZeroPad2d(padding)
    else:
        raise NotImplementedError(f'padding layer [{pad_type}] is not implemented')
    return layer


def get_valid_padding(kernel_size, dilation):
    kernel_size = kernel_size + (kernel_size - 1) * (dilation - 1)
    padding = (kernel_size - 1) // 2
    return padding


class ShortcutBlock(nn.Module):
    """ Elementwise sum the output of a submodule to its input """
    def __init__(self, submodule):
        super(ShortcutBlock, self).__init__()
        self.sub = submodule

    def forward(self, x):
        output = x + self.sub(x)
        return output

    def __repr__(self):
        return 'Identity + \n|' + self.sub.__repr__().replace('\n', '\n|')


def sequential(*args):
    """ Flatten Sequential. It unwraps nn.Sequential. """
    if len(args) == 1:
        if isinstance(args[0], OrderedDict):
            raise NotImplementedError('sequential does not support OrderedDict input.')
        return args[0]  # No sequential is needed.
    modules = []
    for module in args:
        if isinstance(module, nn.Sequential):
            for submodule in module.children():
                modules.append(submodule)
        elif isinstance(module, nn.Module):
            modules.append(module)
    return nn.Sequential(*modules)


def conv_block(in_nc, out_nc, kernel_size, stride=1, dilation=1, groups=1, bias=True,
               pad_type='zero', norm_type=None, act_type='relu', mode='CNA', convtype='Conv2D',
               spectral_norm=False):
    """ Conv layer with padding, normalization, activation """
    assert mode in ['CNA', 'NAC', 'CNAC'], f'Wrong conv mode [{mode}]'
    padding = get_valid_padding(kernel_size, dilation)
    p = pad(pad_type, padding) if pad_type and pad_type != 'zero' else None
    padding = padding if pad_type == 'zero' else 0

    if convtype=='PartialConv2D':
        from torchvision.ops import PartialConv2d  # this is definitely not going to work, but PartialConv2d doesn't work anyway and this shuts up static analyzer
        c = PartialConv2d(in_nc, out_nc, kernel_size=kernel_size, stride=stride, padding=padding,
               dilation=dilation, bias=bias, groups=groups)
    elif convtype=='DeformConv2D':
        from torchvision.ops import DeformConv2d  # not tested
        c = DeformConv2d(in_nc, out_nc, kernel_size=kernel_size, stride=stride, padding=padding,
               dilation=dilation, bias=bias, groups=groups)
    elif convtype=='Conv3D':
        c = nn.Conv3d(in_nc, out_nc, kernel_size=kernel_size, stride=stride, padding=padding,
                dilation=dilation, bias=bias, groups=groups)
    else:
        c = nn.Conv2d(in_nc, out_nc, kernel_size=kernel_size, stride=stride, padding=padding,
                dilation=dilation, bias=bias, groups=groups)

    if spectral_norm:
        c = nn.utils.spectral_norm(c)

    a = act(act_type) if act_type else None
    if 'CNA' in mode:
        n = norm(norm_type, out_nc) if norm_type else None
        return sequential(p, c, n, a)
    elif mode == 'NAC':
        if norm_type is None and act_type is not None:
            a = act(act_type, inplace=False)
        n = norm(norm_type, in_nc) if norm_type else None
        return sequential(n, a, p, c)