File size: 5,842 Bytes
5c32cd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import torch

from contextlib import contextmanager
from typing import Union, Tuple


_size_2_t = Union[int, Tuple[int, int]]


class LinearWithLoRA(torch.nn.Module):
    def __init__(
            self,
            in_features: int,
            out_features: int,
            bias: bool = True,
            device=None,
            dtype=None) -> None:
        super().__init__()
        self.weight_module = None
        self.up = None
        self.down = None
        self.bias = None
        self.in_features = in_features
        self.out_features = out_features
        self.device = device
        self.dtype = dtype
        self.weight = None

    def bind_lora(self, weight_module):
        self.weight_module = [weight_module]

    def unbind_lora(self):
        if self.up is not None and self.down is not None:  # SAI's model is weird and needs this
            self.weight_module = None

    def get_original_weight(self):
        if self.weight_module is None:
            return None
        return self.weight_module[0].weight

    def forward(self, x):
        if self.weight is not None:
            return torch.nn.functional.linear(x, self.weight.to(x),
                                              self.bias.to(x) if self.bias is not None else None)

        original_weight = self.get_original_weight()

        if original_weight is None:
            return None  # A1111 needs first_time_calculation

        if self.up is not None and self.down is not None:
            weight = original_weight.to(x) + torch.mm(self.up, self.down).to(x)
        else:
            weight = original_weight.to(x)

        return torch.nn.functional.linear(x, weight, self.bias.to(x) if self.bias is not None else None)


class Conv2dWithLoRA(torch.nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        kernel_size: _size_2_t,
        stride: _size_2_t = 1,
        padding: Union[str, _size_2_t] = 0,
        dilation: _size_2_t = 1,
        groups: int = 1,
        bias: bool = True,
        padding_mode: str = 'zeros',
        device=None,
        dtype=None
    ) -> None:
        super().__init__()
        self.stride = stride
        self.padding = padding
        self.dilation = dilation
        self.groups = groups
        self.weight_module = None
        self.bias = None
        self.up = None
        self.down = None
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.kernel_size = kernel_size
        self.padding_mode = padding_mode
        self.device = device
        self.dtype = dtype
        self.weight = None

    def bind_lora(self, weight_module):
        self.weight_module = [weight_module]

    def unbind_lora(self):
        if self.up is not None and self.down is not None:  # SAI's model is weird and needs this
            self.weight_module = None

    def get_original_weight(self):
        if self.weight_module is None:
            return None
        return self.weight_module[0].weight

    def forward(self, x):
        if self.weight is not None:
            return torch.nn.functional.conv2d(x, self.weight.to(x), self.bias.to(x) if self.bias is not None else None,
                                              self.stride, self.padding, self.dilation, self.groups)

        original_weight = self.get_original_weight()

        if original_weight is None:
            return None  # A1111 needs first_time_calculation

        if self.up is not None and self.down is not None:
            weight = original_weight.to(x) + torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1)).reshape(original_weight.shape).to(x)
        else:
            weight = original_weight.to(x)

        return torch.nn.functional.conv2d(x, weight, self.bias.to(x) if self.bias is not None else None,
                                          self.stride, self.padding, self.dilation, self.groups)


@contextmanager
def controlnet_lora_hijack():
    linear, conv2d = torch.nn.Linear, torch.nn.Conv2d
    torch.nn.Linear, torch.nn.Conv2d = LinearWithLoRA, Conv2dWithLoRA
    try:
        yield
    finally:
        torch.nn.Linear, torch.nn.Conv2d = linear, conv2d


def recursive_set(obj, key, value):
    if obj is None:
        return
    if '.' in key:
        k1, k2 = key.split('.', 1)
        recursive_set(getattr(obj, k1, None), k2, value)
    else:
        setattr(obj, key, value)


def force_load_state_dict(model, state_dict):
    for k in list(state_dict.keys()):
        recursive_set(model, k, torch.nn.Parameter(state_dict[k]))
        del state_dict[k]
    return


def recursive_bind_lora(obj, key, value):
    if obj is None:
        return
    if '.' in key:
        k1, k2 = key.split('.', 1)
        recursive_bind_lora(getattr(obj, k1, None), k2, value)
    else:
        target = getattr(obj, key, None)
        if target is not None and hasattr(target, 'bind_lora'):
            target.bind_lora(value)


def recursive_get(obj, key):
    if obj is None:
        return
    if '.' in key:
        k1, k2 = key.split('.', 1)
        return recursive_get(getattr(obj, k1, None), k2)
    else:
        return getattr(obj, key, None)


def bind_control_lora(base_model, control_lora_model):
    sd = base_model.state_dict()
    keys = list(sd.keys())
    keys = list(set([k.rsplit('.', 1)[0] for k in keys]))
    module_dict = {k: recursive_get(base_model, k) for k in keys}
    for k, v in module_dict.items():
        recursive_bind_lora(control_lora_model, k, v)


def torch_dfs(model: torch.nn.Module):
    result = [model]
    for child in model.children():
        result += torch_dfs(child)
    return result


def unbind_control_lora(control_lora_model):
    for m in torch_dfs(control_lora_model):
        if hasattr(m, 'unbind_lora'):
            m.unbind_lora()
    return