Spaces:
Paused
Paused
File size: 7,757 Bytes
5c32cd0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
# https://github.com/kohya-ss/ControlNet-LLLite-ComfyUI/blob/main/node_control_net_lllite.py
import re
import torch
from modules import devices
class LLLiteModule(torch.nn.Module):
def __init__(
self,
name: str,
is_conv2d: bool,
in_dim: int,
depth: int,
cond_emb_dim: int,
mlp_dim: int,
):
super().__init__()
self.name = name
self.is_conv2d = is_conv2d
self.is_first = False
modules = []
modules.append(torch.nn.Conv2d(3, cond_emb_dim // 2, kernel_size=4, stride=4, padding=0)) # to latent (from VAE) size*2
if depth == 1:
modules.append(torch.nn.ReLU(inplace=True))
modules.append(torch.nn.Conv2d(cond_emb_dim // 2, cond_emb_dim, kernel_size=2, stride=2, padding=0))
elif depth == 2:
modules.append(torch.nn.ReLU(inplace=True))
modules.append(torch.nn.Conv2d(cond_emb_dim // 2, cond_emb_dim, kernel_size=4, stride=4, padding=0))
elif depth == 3:
# kernel size 8は大きすぎるので、4にする / kernel size 8 is too large, so set it to 4
modules.append(torch.nn.ReLU(inplace=True))
modules.append(torch.nn.Conv2d(cond_emb_dim // 2, cond_emb_dim // 2, kernel_size=4, stride=4, padding=0))
modules.append(torch.nn.ReLU(inplace=True))
modules.append(torch.nn.Conv2d(cond_emb_dim // 2, cond_emb_dim, kernel_size=2, stride=2, padding=0))
self.conditioning1 = torch.nn.Sequential(*modules)
if self.is_conv2d:
self.down = torch.nn.Sequential(
torch.nn.Conv2d(in_dim, mlp_dim, kernel_size=1, stride=1, padding=0),
torch.nn.ReLU(inplace=True),
)
self.mid = torch.nn.Sequential(
torch.nn.Conv2d(mlp_dim + cond_emb_dim, mlp_dim, kernel_size=1, stride=1, padding=0),
torch.nn.ReLU(inplace=True),
)
self.up = torch.nn.Sequential(
torch.nn.Conv2d(mlp_dim, in_dim, kernel_size=1, stride=1, padding=0),
)
else:
self.down = torch.nn.Sequential(
torch.nn.Linear(in_dim, mlp_dim),
torch.nn.ReLU(inplace=True),
)
self.mid = torch.nn.Sequential(
torch.nn.Linear(mlp_dim + cond_emb_dim, mlp_dim),
torch.nn.ReLU(inplace=True),
)
self.up = torch.nn.Sequential(
torch.nn.Linear(mlp_dim, in_dim),
)
self.depth = depth
self.cond_image = None
self.cond_emb = None
def set_cond_image(self, cond_image):
self.cond_image = cond_image
self.cond_emb = None
def forward(self, x):
if self.cond_emb is None:
# print(f"cond_emb is None, {self.name}")
cx = self.conditioning1(self.cond_image.to(x.device, dtype=x.dtype))
if not self.is_conv2d:
# reshape / b,c,h,w -> b,h*w,c
n, c, h, w = cx.shape
cx = cx.view(n, c, h * w).permute(0, 2, 1)
self.cond_emb = cx
cx = self.cond_emb
# uncond/condでxはバッチサイズが2倍
if x.shape[0] != cx.shape[0]:
if self.is_conv2d:
cx = cx.repeat(x.shape[0] // cx.shape[0], 1, 1, 1)
else:
# print("x.shape[0] != cx.shape[0]", x.shape[0], cx.shape[0])
cx = cx.repeat(x.shape[0] // cx.shape[0], 1, 1)
try:
cx = torch.cat([cx, self.down(x)], dim=1 if self.is_conv2d else 2)
cx = self.mid(cx)
cx = self.up(cx)
return cx
except RuntimeError as e:
# high-res fix shape mismatch
return 0
all_hack = {}
def clear_all_lllite():
global all_hack
for k, v in all_hack.items():
k.forward = v
k.lllite_list = []
all_hack = {}
return
class PlugableControlLLLite(torch.nn.Module):
def __init__(self, state_dict):
super().__init__()
self.cache = {}
module_weights = {}
for key, value in state_dict.items():
fragments = key.split(".")
module_name = fragments[0]
weight_name = ".".join(fragments[1:])
if module_name not in module_weights:
module_weights[module_name] = {}
module_weights[module_name][weight_name] = value
modules = {}
for module_name, weights in module_weights.items():
if "conditioning1.4.weight" in weights:
depth = 3
elif weights["conditioning1.2.weight"].shape[-1] == 4:
depth = 2
else:
depth = 1
module = LLLiteModule(
name=module_name,
is_conv2d=weights["down.0.weight"].ndim == 4,
in_dim=weights["down.0.weight"].shape[1],
depth=depth,
cond_emb_dim=weights["conditioning1.0.weight"].shape[0] * 2,
mlp_dim=weights["down.0.weight"].shape[0],
)
info = module.load_state_dict(weights)
modules[module_name] = module
setattr(self, module_name, module)
if len(modules) == 1:
module.is_first = True
self.modules = modules
return
def reset(self):
self.cache = {}
return
@torch.no_grad()
def hook(self, model, cond, weight, start, end):
global all_hack
cond_image = cond * 2.0 - 1.0
for module in self.modules.values():
module.set_cond_image(cond_image)
for k, v in self.modules.items():
k = k.replace('middle_block', 'middle_blocks_0')
match = re.match("lllite_unet_(.*)_blocks_(.*)_1_transformer_blocks_(.*)_(.*)_to_(.*)", k, re.M | re.I)
assert match, 'Failed to load ControlLLLite!'
root = match.group(1)
block = match.group(2)
block_number = match.group(3)
attn_name = match.group(4)
proj_name = match.group(5)
if root == 'input':
b = model.input_blocks[int(block)][1].transformer_blocks[int(block_number)]
elif root == 'output':
b = model.output_blocks[int(block)][1].transformer_blocks[int(block_number)]
else:
b = model.middle_block[1].transformer_blocks[int(block_number)]
b = getattr(b, attn_name, None)
assert b is not None, 'Failed to load ControlLLLite!'
b = getattr(b, 'to_' + proj_name, None)
assert b is not None, 'Failed to load ControlLLLite!'
if not hasattr(b, 'lllite_list'):
b.lllite_list = []
if len(b.lllite_list) == 0:
all_hack[b] = b.forward
b.forward = self.get_hacked_forward(original_forward=b.forward, model=model, blk=b)
b.lllite_list.append((weight, start, end, v))
return
def get_hacked_forward(self, original_forward, model, blk):
@torch.no_grad()
def forward(x, **kwargs):
current_sampling_percent = getattr(model, 'current_sampling_percent', 0.5)
hackers = blk.lllite_list
hack = 0
for weight, start, end, module in hackers:
module.to(x.device)
if current_sampling_percent < start or current_sampling_percent > end:
hack = hack + 0
else:
hack = hack + module(x) * weight
x = x + hack
return original_forward(x, **kwargs)
return forward
|