File size: 50,970 Bytes
5c32cd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
import gc
import os
import logging
import re
from collections import OrderedDict
from copy import copy
from typing import Dict, Optional, Tuple
import modules.scripts as scripts
from modules import shared, devices, script_callbacks, processing, masking, images
import gradio as gr
import time


from einops import rearrange
from scripts import global_state, hook, external_code, processor, batch_hijack, controlnet_version, utils
from scripts.controlnet_lora import bind_control_lora, unbind_control_lora
from scripts.processor import *
from scripts.adapter import Adapter, StyleAdapter, Adapter_light
from scripts.controlnet_lllite import PlugableControlLLLite, clear_all_lllite
from scripts.controlmodel_ipadapter import PlugableIPAdapter, clear_all_ip_adapter
from scripts.utils import load_state_dict, get_unique_axis0
from scripts.hook import ControlParams, UnetHook, ControlModelType, HackedImageRNG
from scripts.controlnet_ui.controlnet_ui_group import ControlNetUiGroup, UiControlNetUnit
from scripts.logging import logger
from modules.processing import StableDiffusionProcessingImg2Img, StableDiffusionProcessingTxt2Img
from modules.images import save_image
from scripts.infotext import Infotext

import cv2
import numpy as np
import torch

from pathlib import Path
from PIL import Image, ImageFilter, ImageOps
from scripts.lvminthin import lvmin_thin, nake_nms
from scripts.processor import model_free_preprocessors
from scripts.controlnet_model_guess import build_model_by_guess


gradio_compat = True
try:
    from distutils.version import LooseVersion
    from importlib_metadata import version
    if LooseVersion(version("gradio")) < LooseVersion("3.10"):
        gradio_compat = False
except ImportError:
    pass


# Gradio 3.32 bug fix
import tempfile
gradio_tempfile_path = os.path.join(tempfile.gettempdir(), 'gradio')
os.makedirs(gradio_tempfile_path, exist_ok=True)


def clear_all_secondary_control_models():
    clear_all_lllite()
    clear_all_ip_adapter()


def find_closest_lora_model_name(search: str):
    if not search:
        return None
    if search in global_state.cn_models:
        return search
    search = search.lower()
    if search in global_state.cn_models_names:
        return global_state.cn_models_names.get(search)
    applicable = [name for name in global_state.cn_models_names.keys()
                  if search in name.lower()]
    if not applicable:
        return None
    applicable = sorted(applicable, key=lambda name: len(name))
    return global_state.cn_models_names[applicable[0]]


def swap_img2img_pipeline(p: processing.StableDiffusionProcessingImg2Img):
    p.__class__ = processing.StableDiffusionProcessingTxt2Img
    dummy = processing.StableDiffusionProcessingTxt2Img()
    for k,v in dummy.__dict__.items():
        if hasattr(p, k):
            continue
        setattr(p, k, v)


global_state.update_cn_models()


def image_dict_from_any(image) -> Optional[Dict[str, np.ndarray]]:
    if image is None:
        return None

    if isinstance(image, (tuple, list)):
        image = {'image': image[0], 'mask': image[1]}
    elif not isinstance(image, dict):
        image = {'image': image, 'mask': None}
    else:  # type(image) is dict
        # copy to enable modifying the dict and prevent response serialization error
        image = dict(image)

    if isinstance(image['image'], str):
        if os.path.exists(image['image']):
            image['image'] = np.array(Image.open(image['image'])).astype('uint8')
        elif image['image']:
            image['image'] = external_code.to_base64_nparray(image['image'])
        else:
            image['image'] = None            

    # If there is no image, return image with None image and None mask
    if image['image'] is None:
        image['mask'] = None
        return image

    if isinstance(image['mask'], str):
        if os.path.exists(image['mask']):
            image['mask'] = np.array(Image.open(image['mask'])).astype('uint8')
        elif image['mask']:
            image['mask'] = external_code.to_base64_nparray(image['mask'])
        else:
            image['mask'] = np.zeros_like(image['image'], dtype=np.uint8)
    elif image['mask'] is None:
        image['mask'] = np.zeros_like(image['image'], dtype=np.uint8)

    return image


def image_has_mask(input_image: np.ndarray) -> bool:
    """
    Determine if an image has an alpha channel (mask) that is not empty.

    The function checks if the input image has three dimensions (height, width, channels), 
    and if the third dimension (channel dimension) is of size 4 (presumably RGB + alpha). 
    Then it checks if the maximum value in the alpha channel is greater than 127. This is 
    presumably to check if there is any non-transparent (or semi-transparent) pixel in the 
    image. A pixel is considered non-transparent if its alpha value is above 127.

    Args:
        input_image (np.ndarray): A 3D numpy array representing an image. The dimensions 
        should represent [height, width, channels].

    Returns:
        bool: True if the image has a non-empty alpha channel, False otherwise.
    """    
    return (
        input_image.ndim == 3 and 
        input_image.shape[2] == 4 and 
        np.max(input_image[:, :, 3]) > 127
    )


def prepare_mask(
    mask: Image.Image, p: processing.StableDiffusionProcessing
) -> Image.Image:
    """
    Prepare an image mask for the inpainting process.

    This function takes as input a PIL Image object and an instance of the 
    StableDiffusionProcessing class, and performs the following steps to prepare the mask:

    1. Convert the mask to grayscale (mode "L").
    2. If the 'inpainting_mask_invert' attribute of the processing instance is True,
       invert the mask colors.
    3. If the 'mask_blur' attribute of the processing instance is greater than 0,
       apply a Gaussian blur to the mask with a radius equal to 'mask_blur'.

    Args:
        mask (Image.Image): The input mask as a PIL Image object.
        p (processing.StableDiffusionProcessing): An instance of the StableDiffusionProcessing class 
                                                   containing the processing parameters.

    Returns:
        mask (Image.Image): The prepared mask as a PIL Image object.
    """
    mask = mask.convert("L")
    if getattr(p, "inpainting_mask_invert", False):
        mask = ImageOps.invert(mask)
    
    if hasattr(p, 'mask_blur_x'):
        if getattr(p, "mask_blur_x", 0) > 0:
            np_mask = np.array(mask)
            kernel_size = 2 * int(2.5 * p.mask_blur_x + 0.5) + 1
            np_mask = cv2.GaussianBlur(np_mask, (kernel_size, 1), p.mask_blur_x)
            mask = Image.fromarray(np_mask)
        if getattr(p, "mask_blur_y", 0) > 0:
            np_mask = np.array(mask)
            kernel_size = 2 * int(2.5 * p.mask_blur_y + 0.5) + 1
            np_mask = cv2.GaussianBlur(np_mask, (1, kernel_size), p.mask_blur_y)
            mask = Image.fromarray(np_mask)
    else:
        if getattr(p, "mask_blur", 0) > 0:
            mask = mask.filter(ImageFilter.GaussianBlur(p.mask_blur))
    
    return mask


def set_numpy_seed(p: processing.StableDiffusionProcessing) -> Optional[int]:
    """
    Set the random seed for NumPy based on the provided parameters.

    Args:
        p (processing.StableDiffusionProcessing): The instance of the StableDiffusionProcessing class.

    Returns:
        Optional[int]: The computed random seed if successful, or None if an exception occurs.

    This function sets the random seed for NumPy using the seed and subseed values from the given instance of
    StableDiffusionProcessing. If either seed or subseed is -1, it uses the first value from `all_seeds`.
    Otherwise, it takes the maximum of the provided seed value and 0.

    The final random seed is computed by adding the seed and subseed values, applying a bitwise AND operation
    with 0xFFFFFFFF to ensure it fits within a 32-bit integer.
    """
    try:
        tmp_seed = int(p.all_seeds[0] if p.seed == -1 else max(int(p.seed), 0))
        tmp_subseed = int(p.all_seeds[0] if p.subseed == -1 else max(int(p.subseed), 0))
        seed = (tmp_seed + tmp_subseed) & 0xFFFFFFFF
        np.random.seed(seed)
        return seed
    except Exception as e:
        logger.warning(e)
        logger.warning('Warning: Failed to use consistent random seed.')
        return None


class Script(scripts.Script, metaclass=(
    utils.TimeMeta if logger.level == logging.DEBUG else type)):

    model_cache = OrderedDict()

    def __init__(self) -> None:
        super().__init__()
        self.latest_network = None
        self.preprocessor = global_state.cache_preprocessors(global_state.cn_preprocessor_modules)
        self.unloadable = global_state.cn_preprocessor_unloadable
        self.input_image = None
        self.latest_model_hash = ""
        self.enabled_units = []
        self.detected_map = []
        self.post_processors = []
        self.noise_modifier = None
        batch_hijack.instance.process_batch_callbacks.append(self.batch_tab_process)
        batch_hijack.instance.process_batch_each_callbacks.append(self.batch_tab_process_each)
        batch_hijack.instance.postprocess_batch_each_callbacks.insert(0, self.batch_tab_postprocess_each)
        batch_hijack.instance.postprocess_batch_callbacks.insert(0, self.batch_tab_postprocess)

    def title(self):
        return "ControlNet"

    def show(self, is_img2img):
        return scripts.AlwaysVisible

    @staticmethod
    def get_default_ui_unit(is_ui=True):
        cls = UiControlNetUnit if is_ui else external_code.ControlNetUnit
        return cls(
            enabled=False,
            module="none",
            model="None"
        )

    def uigroup(self, tabname: str, is_img2img: bool, elem_id_tabname: str) -> Tuple[ControlNetUiGroup, gr.State]:
        group = ControlNetUiGroup(
            gradio_compat,
            Script.get_default_ui_unit(),
            self.preprocessor,
        )
        group.render(tabname, elem_id_tabname, is_img2img)
        group.register_callbacks(is_img2img)
        return group, group.render_and_register_unit(tabname, is_img2img)

    def ui(self, is_img2img):
        """this function should create gradio UI elements. See https://gradio.app/docs/#components
        The return value should be an array of all components that are used in processing.
        Values of those returned components will be passed to run() and process() functions.
        """
        infotext = Infotext()
        
        controls = ()
        max_models = shared.opts.data.get("control_net_unit_count", 3)
        elem_id_tabname = ("img2img" if is_img2img else "txt2img") + "_controlnet"
        with gr.Group(elem_id=elem_id_tabname):
            with gr.Accordion(f"ControlNet {controlnet_version.version_flag}", open = False, elem_id="controlnet"):
                if max_models > 1:
                    with gr.Tabs(elem_id=f"{elem_id_tabname}_tabs"):
                        for i in range(max_models):
                            with gr.Tab(f"ControlNet Unit {i}", 
                                        elem_classes=['cnet-unit-tab']):
                                group, state = self.uigroup(f"ControlNet-{i}", is_img2img, elem_id_tabname)
                                infotext.register_unit(i, group)
                                controls += (state,)
                else:
                    with gr.Column():
                        group, state = self.uigroup(f"ControlNet", is_img2img, elem_id_tabname)
                        infotext.register_unit(0, group)
                        controls += (state,)

        if shared.opts.data.get("control_net_sync_field_args", True):
            self.infotext_fields = infotext.infotext_fields
            self.paste_field_names = infotext.paste_field_names

        return controls
    
    @staticmethod
    def clear_control_model_cache():
        Script.model_cache.clear()
        gc.collect()
        devices.torch_gc()

    @staticmethod
    def load_control_model(p, unet, model):
        if model in Script.model_cache:
            logger.info(f"Loading model from cache: {model}")
            return Script.model_cache[model]

        # Remove model from cache to clear space before building another model
        if len(Script.model_cache) > 0 and len(Script.model_cache) >= shared.opts.data.get("control_net_model_cache_size", 2):
            Script.model_cache.popitem(last=False)
            gc.collect()
            devices.torch_gc()

        model_net = Script.build_control_model(p, unet, model)

        if shared.opts.data.get("control_net_model_cache_size", 2) > 0:
            Script.model_cache[model] = model_net

        return model_net

    @staticmethod
    def build_control_model(p, unet, model):
        if model is None or model == 'None':
            raise RuntimeError(f"You have not selected any ControlNet Model.")

        model_path = global_state.cn_models.get(model, None)
        if model_path is None:
            model = find_closest_lora_model_name(model)
            model_path = global_state.cn_models.get(model, None)

        if model_path is None:
            raise RuntimeError(f"model not found: {model}")

        # trim '"' at start/end
        if model_path.startswith("\"") and model_path.endswith("\""):
            model_path = model_path[1:-1]

        if not os.path.exists(model_path):
            raise ValueError(f"file not found: {model_path}")

        logger.info(f"Loading model: {model}")
        state_dict = load_state_dict(model_path)
        network = build_model_by_guess(state_dict, unet, model_path)
        network.to('cpu', dtype=p.sd_model.dtype)
        logger.info(f"ControlNet model {model} loaded.")
        return network

    @staticmethod
    def get_remote_call(p, attribute, default=None, idx=0, strict=False, force=False):
        if not force and not shared.opts.data.get("control_net_allow_script_control", False):
            return default

        def get_element(obj, strict=False):
            if not isinstance(obj, list):
                return obj if not strict or idx == 0 else None
            elif idx < len(obj):
                return obj[idx]
            else:
                return None

        attribute_value = get_element(getattr(p, attribute, None), strict)
        default_value = get_element(default)
        return attribute_value if attribute_value is not None else default_value

    @staticmethod
    def parse_remote_call(p, unit: external_code.ControlNetUnit, idx):
        selector = Script.get_remote_call

        unit.enabled = selector(p, "control_net_enabled", unit.enabled, idx, strict=True)
        unit.module = selector(p, "control_net_module", unit.module, idx)
        unit.model = selector(p, "control_net_model", unit.model, idx)
        unit.weight = selector(p, "control_net_weight", unit.weight, idx)
        unit.image = selector(p, "control_net_image", unit.image, idx)
        unit.resize_mode = selector(p, "control_net_resize_mode", unit.resize_mode, idx)
        unit.low_vram = selector(p, "control_net_lowvram", unit.low_vram, idx)
        unit.processor_res = selector(p, "control_net_pres", unit.processor_res, idx)
        unit.threshold_a = selector(p, "control_net_pthr_a", unit.threshold_a, idx)
        unit.threshold_b = selector(p, "control_net_pthr_b", unit.threshold_b, idx)
        unit.guidance_start = selector(p, "control_net_guidance_start", unit.guidance_start, idx)
        unit.guidance_end = selector(p, "control_net_guidance_end", unit.guidance_end, idx)
        # Backward compatibility. See https://github.com/Mikubill/sd-webui-controlnet/issues/1740
        # for more details.
        unit.guidance_end = selector(p, "control_net_guidance_strength", unit.guidance_end, idx)
        unit.control_mode = selector(p, "control_net_control_mode", unit.control_mode, idx)
        unit.pixel_perfect = selector(p, "control_net_pixel_perfect", unit.pixel_perfect, idx)

        return unit

    @staticmethod
    def detectmap_proc(detected_map, module, resize_mode, h, w):

        if 'inpaint' in module:
            detected_map = detected_map.astype(np.float32)
        else:
            detected_map = HWC3(detected_map)

        def safe_numpy(x):
            # A very safe method to make sure that Apple/Mac works
            y = x

            # below is very boring but do not change these. If you change these Apple or Mac may fail.
            y = y.copy()
            y = np.ascontiguousarray(y)
            y = y.copy()
            return y

        def get_pytorch_control(x):
            # A very safe method to make sure that Apple/Mac works
            y = x

            # below is very boring but do not change these. If you change these Apple or Mac may fail.
            y = torch.from_numpy(y)
            y = y.float() / 255.0
            y = rearrange(y, 'h w c -> 1 c h w')
            y = y.clone()
            y = y.to(devices.get_device_for("controlnet"))
            y = y.clone()
            return y

        def high_quality_resize(x, size):
            # Written by lvmin
            # Super high-quality control map up-scaling, considering binary, seg, and one-pixel edges

            inpaint_mask = None
            if x.ndim == 3 and x.shape[2] == 4:
                inpaint_mask = x[:, :, 3]
                x = x[:, :, 0:3]

            if x.shape[0] != size[1] or x.shape[1] != size[0]:
                new_size_is_smaller = (size[0] * size[1]) < (x.shape[0] * x.shape[1])
                new_size_is_bigger = (size[0] * size[1]) > (x.shape[0] * x.shape[1])
                unique_color_count = len(get_unique_axis0(x.reshape(-1, x.shape[2])))
                is_one_pixel_edge = False
                is_binary = False
                if unique_color_count == 2:
                    is_binary = np.min(x) < 16 and np.max(x) > 240
                    if is_binary:
                        xc = x
                        xc = cv2.erode(xc, np.ones(shape=(3, 3), dtype=np.uint8), iterations=1)
                        xc = cv2.dilate(xc, np.ones(shape=(3, 3), dtype=np.uint8), iterations=1)
                        one_pixel_edge_count = np.where(xc < x)[0].shape[0]
                        all_edge_count = np.where(x > 127)[0].shape[0]
                        is_one_pixel_edge = one_pixel_edge_count * 2 > all_edge_count

                if 2 < unique_color_count < 200:
                    interpolation = cv2.INTER_NEAREST
                elif new_size_is_smaller:
                    interpolation = cv2.INTER_AREA
                else:
                    interpolation = cv2.INTER_CUBIC  # Must be CUBIC because we now use nms. NEVER CHANGE THIS

                y = cv2.resize(x, size, interpolation=interpolation)
                if inpaint_mask is not None:
                    inpaint_mask = cv2.resize(inpaint_mask, size, interpolation=interpolation)

                if is_binary:
                    y = np.mean(y.astype(np.float32), axis=2).clip(0, 255).astype(np.uint8)
                    if is_one_pixel_edge:
                        y = nake_nms(y)
                        _, y = cv2.threshold(y, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
                        y = lvmin_thin(y, prunings=new_size_is_bigger)
                    else:
                        _, y = cv2.threshold(y, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
                    y = np.stack([y] * 3, axis=2)
            else:
                y = x

            if inpaint_mask is not None:
                inpaint_mask = (inpaint_mask > 127).astype(np.float32) * 255.0
                inpaint_mask = inpaint_mask[:, :, None].clip(0, 255).astype(np.uint8)
                y = np.concatenate([y, inpaint_mask], axis=2)

            return y

        if resize_mode == external_code.ResizeMode.RESIZE:
            detected_map = high_quality_resize(detected_map, (w, h))
            detected_map = safe_numpy(detected_map)
            return get_pytorch_control(detected_map), detected_map

        old_h, old_w, _ = detected_map.shape
        old_w = float(old_w)
        old_h = float(old_h)
        k0 = float(h) / old_h
        k1 = float(w) / old_w

        safeint = lambda x: int(np.round(x))

        if resize_mode == external_code.ResizeMode.OUTER_FIT:
            k = min(k0, k1)
            borders = np.concatenate([detected_map[0, :, :], detected_map[-1, :, :], detected_map[:, 0, :], detected_map[:, -1, :]], axis=0)
            high_quality_border_color = np.median(borders, axis=0).astype(detected_map.dtype)
            if len(high_quality_border_color) == 4:
                # Inpaint hijack
                high_quality_border_color[3] = 255
            high_quality_background = np.tile(high_quality_border_color[None, None], [h, w, 1])
            detected_map = high_quality_resize(detected_map, (safeint(old_w * k), safeint(old_h * k)))
            new_h, new_w, _ = detected_map.shape
            pad_h = max(0, (h - new_h) // 2)
            pad_w = max(0, (w - new_w) // 2)
            high_quality_background[pad_h:pad_h + new_h, pad_w:pad_w + new_w] = detected_map
            detected_map = high_quality_background
            detected_map = safe_numpy(detected_map)
            return get_pytorch_control(detected_map), detected_map
        else:
            k = max(k0, k1)
            detected_map = high_quality_resize(detected_map, (safeint(old_w * k), safeint(old_h * k)))
            new_h, new_w, _ = detected_map.shape
            pad_h = max(0, (new_h - h) // 2)
            pad_w = max(0, (new_w - w) // 2)
            detected_map = detected_map[pad_h:pad_h+h, pad_w:pad_w+w]
            detected_map = safe_numpy(detected_map)
            return get_pytorch_control(detected_map), detected_map

    @staticmethod
    def get_enabled_units(p):
        units = external_code.get_all_units_in_processing(p)
        if len(units) == 0:
            # fill a null group
            remote_unit = Script.parse_remote_call(p, Script.get_default_ui_unit(), 0)
            if remote_unit.enabled:
                units.append(remote_unit)
        
        enabled_units = [
            copy(local_unit)
            for idx, unit in enumerate(units)
            for local_unit in (Script.parse_remote_call(p, unit, idx),)
            if local_unit.enabled
        ]
        Infotext.write_infotext(enabled_units, p)
        return enabled_units

    @staticmethod
    def choose_input_image(
            p: processing.StableDiffusionProcessing, 
            unit: external_code.ControlNetUnit,
            idx: int
        ) -> Tuple[np.ndarray, bool]:
        """ Choose input image from following sources with descending priority:
         - p.image_control: [Deprecated] Lagacy way to pass image to controlnet.
         - p.control_net_input_image: [Deprecated] Lagacy way to pass image to controlnet.
         - unit.image: 
           - ControlNet tab input image.
           - Input image from API call.
         - p.init_images: A1111 img2img tab input image.

        Returns:
            - The input image in ndarray form.
            - Whether input image is from A1111.
        """
        image_from_a1111 = False

        p_input_image = Script.get_remote_call(p, "control_net_input_image", None, idx)
        image = image_dict_from_any(unit.image)

        if batch_hijack.instance.is_batch and getattr(p, "image_control", None) is not None:
            logger.warning("Warn: Using legacy field 'p.image_control'.")
            input_image = HWC3(np.asarray(p.image_control))
        elif p_input_image is not None:
            logger.warning("Warn: Using legacy field 'p.controlnet_input_image'")
            if isinstance(p_input_image, dict) and "mask" in p_input_image and "image" in p_input_image:
                color = HWC3(np.asarray(p_input_image['image']))
                alpha = np.asarray(p_input_image['mask'])[..., None]
                input_image = np.concatenate([color, alpha], axis=2)
            else:
                input_image = HWC3(np.asarray(p_input_image))
        elif image is not None:
            while len(image['mask'].shape) < 3:
                image['mask'] = image['mask'][..., np.newaxis]

            # Need to check the image for API compatibility
            if isinstance(image['image'], str):
                from modules.api.api import decode_base64_to_image
                input_image = HWC3(np.asarray(decode_base64_to_image(image['image'])))
            else:
                input_image = HWC3(image['image'])

            have_mask = 'mask' in image and not (
                (image['mask'][:, :, 0] <= 5).all() or 
                (image['mask'][:, :, 0] >= 250).all()
            )

            if 'inpaint' in unit.module:
                logger.info("using inpaint as input")
                color = HWC3(image['image'])
                if have_mask:
                    alpha = image['mask'][:, :, 0:1]
                else:
                    alpha = np.zeros_like(color)[:, :, 0:1]
                input_image = np.concatenate([color, alpha], axis=2)
            else:
                if have_mask and not shared.opts.data.get("controlnet_ignore_noninpaint_mask", False):
                    logger.info("using mask as input")
                    input_image = HWC3(image['mask'][:, :, 0])
                    unit.module = 'none'  # Always use black bg and white line
        else:
            # use img2img init_image as default
            input_image = getattr(p, "init_images", [None])[0]
            if input_image is None:
                if batch_hijack.instance.is_batch:
                    shared.state.interrupted = True
                raise ValueError('controlnet is enabled but no input image is given')

            input_image = HWC3(np.asarray(input_image))
            image_from_a1111 = True
        
        assert isinstance(input_image, np.ndarray)
        return input_image, image_from_a1111
    
    @staticmethod
    def bound_check_params(unit: external_code.ControlNetUnit) -> None:
        """
        Checks and corrects negative parameters in ControlNetUnit 'unit'.
        Parameters 'processor_res', 'threshold_a', 'threshold_b' are reset to 
        their default values if negative.
        
        Args:
            unit (external_code.ControlNetUnit): The ControlNetUnit instance to check.
        """
        cfg = preprocessor_sliders_config.get(
            global_state.get_module_basename(unit.module), [])
        defaults = {
            param: cfg_default['value']
            for param, cfg_default in zip(
                ("processor_res", 'threshold_a', 'threshold_b'), cfg)
            if cfg_default is not None
        }
        for param, default_value in defaults.items():
            value = getattr(unit, param)
            if value < 0:
                setattr(unit, param, default_value)
                logger.warning(f'[{unit.module}.{param}] Invalid value({value}), using default value {default_value}.')

    def controlnet_main_entry(self, p):
        sd_ldm = p.sd_model
        unet = sd_ldm.model.diffusion_model
        self.noise_modifier = None

        setattr(p, 'controlnet_control_loras', [])

        if self.latest_network is not None:
            # always restore (~0.05s)
            self.latest_network.restore()

        # always clear (~0.05s)
        clear_all_secondary_control_models()

        if not batch_hijack.instance.is_batch:
            self.enabled_units = Script.get_enabled_units(p)

        if len(self.enabled_units) == 0:
           self.latest_network = None
           return

        detected_maps = []
        forward_params = []
        post_processors = []

        # cache stuff
        if self.latest_model_hash != p.sd_model.sd_model_hash:
            Script.clear_control_model_cache()

        for idx, unit in enumerate(self.enabled_units):
            unit.module = global_state.get_module_basename(unit.module)

        # unload unused preproc
        module_list = [unit.module for unit in self.enabled_units]
        for key in self.unloadable:
            if key not in module_list:
                self.unloadable.get(key, lambda:None)()

        self.latest_model_hash = p.sd_model.sd_model_hash
        for idx, unit in enumerate(self.enabled_units):
            Script.bound_check_params(unit)

            resize_mode = external_code.resize_mode_from_value(unit.resize_mode)
            control_mode = external_code.control_mode_from_value(unit.control_mode)

            if unit.module in model_free_preprocessors:
                model_net = None
            else:
                model_net = Script.load_control_model(p, unet, unit.model)
                model_net.reset()

                if getattr(model_net, 'is_control_lora', False):
                    control_lora = model_net.control_model
                    bind_control_lora(unet, control_lora)
                    p.controlnet_control_loras.append(control_lora)

            input_image, image_from_a1111 = Script.choose_input_image(p, unit, idx)
            if image_from_a1111:
                a1111_i2i_resize_mode = getattr(p, "resize_mode", None)
                if a1111_i2i_resize_mode is not None:
                    resize_mode = external_code.resize_mode_from_value(a1111_i2i_resize_mode)
            
            a1111_mask_image : Optional[Image.Image] = getattr(p, "image_mask", None)
            if 'inpaint' in unit.module and not image_has_mask(input_image) and a1111_mask_image is not None:
                a1111_mask = np.array(prepare_mask(a1111_mask_image, p))
                if a1111_mask.ndim == 2:
                    if a1111_mask.shape[0] == input_image.shape[0]:
                        if a1111_mask.shape[1] == input_image.shape[1]:
                            input_image = np.concatenate([input_image[:, :, 0:3], a1111_mask[:, :, None]], axis=2)
                            a1111_i2i_resize_mode = getattr(p, "resize_mode", None)
                            if a1111_i2i_resize_mode is not None:
                                resize_mode = external_code.resize_mode_from_value(a1111_i2i_resize_mode)

            if 'reference' not in unit.module and issubclass(type(p), StableDiffusionProcessingImg2Img) \
                    and p.inpaint_full_res and a1111_mask_image is not None:
                logger.debug("A1111 inpaint mask START")
                input_image = [input_image[:, :, i] for i in range(input_image.shape[2])]
                input_image = [Image.fromarray(x) for x in input_image]

                mask = prepare_mask(a1111_mask_image, p)

                crop_region = masking.get_crop_region(np.array(mask), p.inpaint_full_res_padding)
                crop_region = masking.expand_crop_region(crop_region, p.width, p.height, mask.width, mask.height)

                input_image = [
                    images.resize_image(resize_mode.int_value(), i, mask.width, mask.height) 
                    for i in input_image
                ]

                input_image = [x.crop(crop_region) for x in input_image]
                input_image = [
                    images.resize_image(external_code.ResizeMode.OUTER_FIT.int_value(), x, p.width, p.height) 
                    for x in input_image
                ]

                input_image = [np.asarray(x)[:, :, 0] for x in input_image]
                input_image = np.stack(input_image, axis=2)
                logger.debug("A1111 inpaint mask END")

            if 'inpaint_only' == unit.module and issubclass(type(p), StableDiffusionProcessingImg2Img) and p.image_mask is not None:
                logger.warning('A1111 inpaint and ControlNet inpaint duplicated. ControlNet support enabled.')
                unit.module = 'inpaint'

            # safe numpy
            logger.debug("Safe numpy convertion START")
            input_image = np.ascontiguousarray(input_image.copy()).copy()
            logger.debug("Safe numpy convertion END")

            logger.info(f"Loading preprocessor: {unit.module}")
            preprocessor = self.preprocessor[unit.module]

            high_res_fix = isinstance(p, StableDiffusionProcessingTxt2Img) and getattr(p, 'enable_hr', False)

            h = (p.height // 8) * 8
            w = (p.width // 8) * 8

            if high_res_fix:
                if p.hr_resize_x == 0 and p.hr_resize_y == 0:
                    hr_y = int(p.height * p.hr_scale)
                    hr_x = int(p.width * p.hr_scale)
                else:
                    hr_y, hr_x = p.hr_resize_y, p.hr_resize_x
                hr_y = (hr_y // 8) * 8
                hr_x = (hr_x // 8) * 8
            else:
                hr_y = h
                hr_x = w

            if unit.module == 'inpaint_only+lama' and resize_mode == external_code.ResizeMode.OUTER_FIT:
                # inpaint_only+lama is special and required outpaint fix
                _, input_image = Script.detectmap_proc(input_image, unit.module, resize_mode, hr_y, hr_x)

            control_model_type = ControlModelType.ControlNet
            global_average_pooling = False

            if 'reference' in unit.module:
                control_model_type = ControlModelType.AttentionInjection
            elif 'revision' in unit.module:
                control_model_type = ControlModelType.ReVision
            elif hasattr(model_net, 'control_model') and (isinstance(model_net.control_model, Adapter) or isinstance(model_net.control_model, Adapter_light)):
                control_model_type = ControlModelType.T2I_Adapter
            elif hasattr(model_net, 'control_model') and isinstance(model_net.control_model, StyleAdapter):
                control_model_type = ControlModelType.T2I_StyleAdapter
            elif isinstance(model_net, PlugableIPAdapter):
                control_model_type = ControlModelType.IPAdapter
            elif isinstance(model_net, PlugableControlLLLite):
                control_model_type = ControlModelType.Controlllite

            if control_model_type is ControlModelType.ControlNet:
                global_average_pooling = model_net.control_model.global_average_pooling

            preprocessor_resolution = unit.processor_res
            if unit.pixel_perfect:
                preprocessor_resolution = external_code.pixel_perfect_resolution(
                    input_image,
                    target_H=h,
                    target_W=w,
                    resize_mode=resize_mode
                )

            logger.info(f'preprocessor resolution = {preprocessor_resolution}')
            # Preprocessor result may depend on numpy random operations, use the
            # random seed in `StableDiffusionProcessing` to make the 
            # preprocessor result reproducable.
            # Currently following preprocessors use numpy random:
            # - shuffle
            seed = set_numpy_seed(p)
            logger.debug(f"Use numpy seed {seed}.")
            detected_map, is_image = preprocessor(
                input_image, 
                res=preprocessor_resolution, 
                thr_a=unit.threshold_a,
                thr_b=unit.threshold_b,
            )

            if high_res_fix:
                if is_image:
                    hr_control, hr_detected_map = Script.detectmap_proc(detected_map, unit.module, resize_mode, hr_y, hr_x)
                    detected_maps.append((hr_detected_map, unit.module))
                else:
                    hr_control = detected_map
            else:
                hr_control = None

            if is_image:
                control, detected_map = Script.detectmap_proc(detected_map, unit.module, resize_mode, h, w)
                detected_maps.append((detected_map, unit.module))
            else:
                control = detected_map
                detected_maps.append((input_image, unit.module))

            if control_model_type == ControlModelType.T2I_StyleAdapter:
                control = control['last_hidden_state']

            if control_model_type == ControlModelType.ReVision:
                control = control['image_embeds']

            preprocessor_dict = dict(
                name=unit.module,
                preprocessor_resolution=preprocessor_resolution,
                threshold_a=unit.threshold_a,
                threshold_b=unit.threshold_b
            )

            forward_param = ControlParams(
                control_model=model_net,
                preprocessor=preprocessor_dict,
                hint_cond=control,
                weight=unit.weight,
                guidance_stopped=False,
                start_guidance_percent=unit.guidance_start,
                stop_guidance_percent=unit.guidance_end,
                advanced_weighting=None,
                control_model_type=control_model_type,
                global_average_pooling=global_average_pooling,
                hr_hint_cond=hr_control,
                soft_injection=control_mode != external_code.ControlMode.BALANCED,
                cfg_injection=control_mode == external_code.ControlMode.CONTROL,
            )
            forward_params.append(forward_param)

            if 'inpaint_only' in unit.module:
                final_inpaint_feed = hr_control if hr_control is not None else control
                final_inpaint_feed = final_inpaint_feed.detach().cpu().numpy()
                final_inpaint_feed = np.ascontiguousarray(final_inpaint_feed).copy()
                final_inpaint_mask = final_inpaint_feed[0, 3, :, :].astype(np.float32)
                final_inpaint_raw = final_inpaint_feed[0, :3].astype(np.float32)
                sigma = shared.opts.data.get("control_net_inpaint_blur_sigma", 7)
                final_inpaint_mask = cv2.dilate(final_inpaint_mask, np.ones((sigma, sigma), dtype=np.uint8))
                final_inpaint_mask = cv2.blur(final_inpaint_mask, (sigma, sigma))[None]
                _, Hmask, Wmask = final_inpaint_mask.shape
                final_inpaint_raw = torch.from_numpy(np.ascontiguousarray(final_inpaint_raw).copy())
                final_inpaint_mask = torch.from_numpy(np.ascontiguousarray(final_inpaint_mask).copy())

                def inpaint_only_post_processing(x):
                    _, H, W = x.shape
                    if Hmask != H or Wmask != W:
                        logger.error('Error: ControlNet find post-processing resolution mismatch. This could be related to other extensions hacked processing.')
                        return x
                    r = final_inpaint_raw.to(x.dtype).to(x.device)
                    m = final_inpaint_mask.to(x.dtype).to(x.device)
                    y = m * x.clip(0, 1) + (1 - m) * r
                    y = y.clip(0, 1)
                    return y

                post_processors.append(inpaint_only_post_processing)

            if 'recolor' in unit.module:
                final_feed = hr_control if hr_control is not None else control
                final_feed = final_feed.detach().cpu().numpy()
                final_feed = np.ascontiguousarray(final_feed).copy()
                final_feed = final_feed[0, 0, :, :].astype(np.float32)
                final_feed = (final_feed * 255).clip(0, 255).astype(np.uint8)
                Hfeed, Wfeed = final_feed.shape

                if 'luminance' in unit.module:

                    def recolor_luminance_post_processing(x):
                        C, H, W = x.shape
                        if Hfeed != H or Wfeed != W or C != 3:
                            logger.error('Error: ControlNet find post-processing resolution mismatch. This could be related to other extensions hacked processing.')
                            return x
                        h = x.detach().cpu().numpy().transpose((1, 2, 0))
                        h = (h * 255).clip(0, 255).astype(np.uint8)
                        h = cv2.cvtColor(h, cv2.COLOR_RGB2LAB)
                        h[:, :, 0] = final_feed
                        h = cv2.cvtColor(h, cv2.COLOR_LAB2RGB)
                        h = (h.astype(np.float32) / 255.0).transpose((2, 0, 1))
                        y = torch.from_numpy(h).clip(0, 1).to(x)
                        return y

                    post_processors.append(recolor_luminance_post_processing)

                if 'intensity' in unit.module:

                    def recolor_intensity_post_processing(x):
                        C, H, W = x.shape
                        if Hfeed != H or Wfeed != W or C != 3:
                            logger.error('Error: ControlNet find post-processing resolution mismatch. This could be related to other extensions hacked processing.')
                            return x
                        h = x.detach().cpu().numpy().transpose((1, 2, 0))
                        h = (h * 255).clip(0, 255).astype(np.uint8)
                        h = cv2.cvtColor(h, cv2.COLOR_RGB2HSV)
                        h[:, :, 2] = final_feed
                        h = cv2.cvtColor(h, cv2.COLOR_HSV2RGB)
                        h = (h.astype(np.float32) / 255.0).transpose((2, 0, 1))
                        y = torch.from_numpy(h).clip(0, 1).to(x)
                        return y

                    post_processors.append(recolor_intensity_post_processing)

            if '+lama' in unit.module:
                forward_param.used_hint_cond_latent = hook.UnetHook.call_vae_using_process(p, control)
                self.noise_modifier = forward_param.used_hint_cond_latent

            del model_net

        is_low_vram = any(unit.low_vram for unit in self.enabled_units)

        self.latest_network = UnetHook(lowvram=is_low_vram)
        self.latest_network.hook(model=unet, sd_ldm=sd_ldm, control_params=forward_params, process=p)

        for param in forward_params:
            if param.control_model_type == ControlModelType.IPAdapter:
                param.control_model.hook(
                    model=unet,
                    clip_vision_output=param.hint_cond,
                    weight=param.weight,
                    dtype=torch.float32,
                    start=param.start_guidance_percent,
                    end=param.stop_guidance_percent
                )
            if param.control_model_type == ControlModelType.Controlllite:
                param.control_model.hook(
                    model=unet,
                    cond=param.hint_cond,
                    weight=param.weight,
                    start=param.start_guidance_percent,
                    end=param.stop_guidance_percent
                )

        self.detected_map = detected_maps
        self.post_processors = post_processors

    def controlnet_hack(self, p):
        t = time.time()
        self.controlnet_main_entry(p)
        if len(self.enabled_units) > 0:
            logger.info(f'ControlNet Hooked - Time = {time.time() - t}')
        return

    @staticmethod
    def process_has_sdxl_refiner(p):
        return getattr(p, 'refiner_checkpoint', None) is not None

    def process(self, p, *args, **kwargs):
        if not self.process_has_sdxl_refiner(p):
            self.controlnet_hack(p)
        return

    def before_process_batch(self, p, *args, **kwargs):
        if self.noise_modifier is not None:
            p.rng = HackedImageRNG(rng=p.rng,
                                   noise_modifier=self.noise_modifier,
                                   sd_model=p.sd_model)
        self.noise_modifier = None
        if self.process_has_sdxl_refiner(p):
            self.controlnet_hack(p)
        return

    def postprocess_batch(self, p, *args, **kwargs):
        images = kwargs.get('images', [])
        for post_processor in self.post_processors:
            for i in range(len(images)):
                images[i] = post_processor(images[i])
        return

    def postprocess(self, p, processed, *args):
        clear_all_secondary_control_models()

        self.noise_modifier = None

        for control_lora in getattr(p, 'controlnet_control_loras', []):
            unbind_control_lora(control_lora)
        p.controlnet_control_loras = []

        self.post_processors = []
        setattr(p, 'controlnet_vae_cache', None)

        processor_params_flag = (', '.join(getattr(processed, 'extra_generation_params', []))).lower()
        self.post_processors = []

        if not batch_hijack.instance.is_batch:
            self.enabled_units.clear()

        if shared.opts.data.get("control_net_detectmap_autosaving", False) and self.latest_network is not None:
            for detect_map, module in self.detected_map:
                detectmap_dir = os.path.join(shared.opts.data.get("control_net_detectedmap_dir", ""), module)
                if not os.path.isabs(detectmap_dir):
                    detectmap_dir = os.path.join(p.outpath_samples, detectmap_dir)
                if module != "none":
                    os.makedirs(detectmap_dir, exist_ok=True)
                    img = Image.fromarray(np.ascontiguousarray(detect_map.clip(0, 255).astype(np.uint8)).copy())
                    save_image(img, detectmap_dir, module)

        if self.latest_network is None:
            return

        if not batch_hijack.instance.is_batch:
            if not shared.opts.data.get("control_net_no_detectmap", False):
                if 'sd upscale' not in processor_params_flag:
                    if self.detected_map is not None:
                        for detect_map, module in self.detected_map:
                            if detect_map is None:
                                continue
                            detect_map = np.ascontiguousarray(detect_map.copy()).copy()
                            detect_map = external_code.visualize_inpaint_mask(detect_map)
                            processed.images.extend([
                                Image.fromarray(
                                    detect_map.clip(0, 255).astype(np.uint8)
                                )
                            ])

        self.input_image = None
        self.latest_network.restore()
        self.latest_network = None
        self.detected_map.clear()

        gc.collect()
        devices.torch_gc()

    def batch_tab_process(self, p, batches, *args, **kwargs):
        self.enabled_units = self.get_enabled_units(p)
        for unit_i, unit in enumerate(self.enabled_units):
            unit.batch_images = iter([batch[unit_i] for batch in batches])

    def batch_tab_process_each(self, p, *args, **kwargs):
        for unit_i, unit in enumerate(self.enabled_units):
            if getattr(unit, 'loopback', False) and batch_hijack.instance.batch_index > 0: continue

            unit.image = next(unit.batch_images)

    def batch_tab_postprocess_each(self, p, processed, *args, **kwargs):
        for unit_i, unit in enumerate(self.enabled_units):
            if getattr(unit, 'loopback', False):
                output_images = getattr(processed, 'images', [])[processed.index_of_first_image:]
                if output_images:
                    unit.image = np.array(output_images[0])
                else:
                    logger.warning(f'Warning: No loopback image found for controlnet unit {unit_i}. Using control map from last batch iteration instead')

    def batch_tab_postprocess(self, p, *args, **kwargs):
        self.enabled_units.clear()
        self.input_image = None
        if self.latest_network is None: return

        self.latest_network.restore()
        self.latest_network = None
        self.detected_map.clear()


def on_ui_settings():
    section = ('control_net', "ControlNet")
    shared.opts.add_option("control_net_detectedmap_dir", shared.OptionInfo(
        global_state.default_detectedmap_dir, "Directory for detected maps auto saving", section=section))
    shared.opts.add_option("control_net_models_path", shared.OptionInfo(
        "", "Extra path to scan for ControlNet models (e.g. training output directory)", section=section))
    shared.opts.add_option("control_net_modules_path", shared.OptionInfo(
        "", "Path to directory containing annotator model directories (requires restart, overrides corresponding command line flag)", section=section))
    shared.opts.add_option("control_net_unit_count", shared.OptionInfo(
        3, "Multi-ControlNet: ControlNet unit number (requires restart)", gr.Slider, {"minimum": 1, "maximum": 10, "step": 1}, section=section))
    shared.opts.add_option("control_net_model_cache_size", shared.OptionInfo(
        1, "Model cache size (requires restart)", gr.Slider, {"minimum": 1, "maximum": 5, "step": 1}, section=section))
    shared.opts.add_option("control_net_inpaint_blur_sigma", shared.OptionInfo(
        7, "ControlNet inpainting Gaussian blur sigma", gr.Slider, {"minimum": 0, "maximum": 64, "step": 1}, section=section))
    shared.opts.add_option("control_net_no_high_res_fix", shared.OptionInfo(
        False, "Do not apply ControlNet during highres fix", gr.Checkbox, {"interactive": True}, section=section))
    shared.opts.add_option("control_net_no_detectmap", shared.OptionInfo(
        False, "Do not append detectmap to output", gr.Checkbox, {"interactive": True}, section=section))
    shared.opts.add_option("control_net_detectmap_autosaving", shared.OptionInfo(
        False, "Allow detectmap auto saving", gr.Checkbox, {"interactive": True}, section=section))
    shared.opts.add_option("control_net_allow_script_control", shared.OptionInfo(
        False, "Allow other script to control this extension", gr.Checkbox, {"interactive": True}, section=section))
    shared.opts.add_option("control_net_sync_field_args", shared.OptionInfo(
        True, "Paste ControlNet parameters in infotext", gr.Checkbox, {"interactive": True}, section=section))
    shared.opts.add_option("controlnet_show_batch_images_in_ui", shared.OptionInfo(
        False, "Show batch images in gradio gallery output", gr.Checkbox, {"interactive": True}, section=section))
    shared.opts.add_option("controlnet_increment_seed_during_batch", shared.OptionInfo(
        False, "Increment seed after each controlnet batch iteration", gr.Checkbox, {"interactive": True}, section=section))
    shared.opts.add_option("controlnet_disable_control_type", shared.OptionInfo(
        False, "Disable control type selection", gr.Checkbox, {"interactive": True}, section=section))
    shared.opts.add_option("controlnet_disable_openpose_edit", shared.OptionInfo(
        False, "Disable openpose edit", gr.Checkbox, {"interactive": True}, section=section))
    shared.opts.add_option("controlnet_ignore_noninpaint_mask", shared.OptionInfo(
        False, "Ignore mask on ControlNet input image if control type is not inpaint", 
        gr.Checkbox, {"interactive": True}, section=section))


batch_hijack.instance.do_hijack()
script_callbacks.on_ui_settings(on_ui_settings)
script_callbacks.on_infotext_pasted(Infotext.on_infotext_pasted)
script_callbacks.on_after_component(ControlNetUiGroup.on_after_component)