File size: 13,574 Bytes
5c32cd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
import math
import torch
import torch.nn as nn


# attention_channels of input, output, middle
SD_V12_CHANNELS = [320] * 4 + [640] * 4 + [1280] * 4 + [1280] * 6 + [640] * 6 + [320] * 6 + [1280] * 2
SD_XL_CHANNELS = [640] * 8 + [1280] * 40 + [1280] * 60 + [640] * 12 + [1280] * 20


class ImageProjModel(torch.nn.Module):
    """Projection Model"""

    def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4):
        super().__init__()

        self.cross_attention_dim = cross_attention_dim
        self.clip_extra_context_tokens = clip_extra_context_tokens
        self.proj = torch.nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim)
        self.norm = torch.nn.LayerNorm(cross_attention_dim)

    def forward(self, image_embeds):
        embeds = image_embeds
        clip_extra_context_tokens = self.proj(embeds).reshape(-1, self.clip_extra_context_tokens,
                                                              self.cross_attention_dim)
        clip_extra_context_tokens = self.norm(clip_extra_context_tokens)
        return clip_extra_context_tokens


# Cross Attention to_k, to_v for IPAdapter
class To_KV(torch.nn.Module):
    def __init__(self, cross_attention_dim):
        super().__init__()

        channels = SD_XL_CHANNELS if cross_attention_dim == 2048 else SD_V12_CHANNELS
        self.to_kvs = torch.nn.ModuleList(
            [torch.nn.Linear(cross_attention_dim, channel, bias=False) for channel in channels])

    def load_state_dict(self, state_dict):
        # input -> output -> middle
        for i, key in enumerate(state_dict.keys()):
            self.to_kvs[i].weight.data = state_dict[key]


def FeedForward(dim, mult=4):
    inner_dim = int(dim * mult)
    return nn.Sequential(
        nn.LayerNorm(dim),
        nn.Linear(dim, inner_dim, bias=False),
        nn.GELU(),
        nn.Linear(inner_dim, dim, bias=False),
    )


def reshape_tensor(x, heads):
    bs, length, width = x.shape
    #(bs, length, width) --> (bs, length, n_heads, dim_per_head)
    x = x.view(bs, length, heads, -1)
    # (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
    x = x.transpose(1, 2)
    # (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head)
    x = x.reshape(bs, heads, length, -1)
    return x


class PerceiverAttention(nn.Module):
    def __init__(self, *, dim, dim_head=64, heads=8):
        super().__init__()
        self.scale = dim_head**-0.5
        self.dim_head = dim_head
        self.heads = heads
        inner_dim = dim_head * heads

        self.norm1 = nn.LayerNorm(dim)
        self.norm2 = nn.LayerNorm(dim)

        self.to_q = nn.Linear(dim, inner_dim, bias=False)
        self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
        self.to_out = nn.Linear(inner_dim, dim, bias=False)


    def forward(self, x, latents):
        """
        Args:
            x (torch.Tensor): image features
                shape (b, n1, D)
            latent (torch.Tensor): latent features
                shape (b, n2, D)
        """
        x = self.norm1(x)
        latents = self.norm2(latents)

        b, l, _ = latents.shape

        q = self.to_q(latents)
        kv_input = torch.cat((x, latents), dim=-2)
        k, v = self.to_kv(kv_input).chunk(2, dim=-1)

        q = reshape_tensor(q, self.heads)
        k = reshape_tensor(k, self.heads)
        v = reshape_tensor(v, self.heads)

        # attention
        scale = 1 / math.sqrt(math.sqrt(self.dim_head))
        weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
        weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
        out = weight @ v

        out = out.permute(0, 2, 1, 3).reshape(b, l, -1)

        return self.to_out(out)


class Resampler(nn.Module):
    def __init__(
        self,
        dim=1024,
        depth=8,
        dim_head=64,
        heads=16,
        num_queries=8,
        embedding_dim=768,
        output_dim=1024,
        ff_mult=4,
    ):
        super().__init__()

        self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5)

        self.proj_in = nn.Linear(embedding_dim, dim)

        self.proj_out = nn.Linear(dim, output_dim)
        self.norm_out = nn.LayerNorm(output_dim)

        self.layers = nn.ModuleList([])
        for _ in range(depth):
            self.layers.append(
                nn.ModuleList(
                    [
                        PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
                        FeedForward(dim=dim, mult=ff_mult),
                    ]
                )
            )

    def forward(self, x):

        latents = self.latents.repeat(x.size(0), 1, 1)

        x = self.proj_in(x)

        for attn, ff in self.layers:
            latents = attn(x, latents) + latents
            latents = ff(latents) + latents

        latents = self.proj_out(latents)
        return self.norm_out(latents)


class IPAdapterModel(torch.nn.Module):
    def __init__(self, state_dict, clip_embeddings_dim, is_plus):
        super().__init__()
        self.device = "cpu"

        # cross_attention_dim is equal to text_encoder output
        self.cross_attention_dim = state_dict["ip_adapter"]["1.to_k_ip.weight"].shape[1]
        self.is_plus = is_plus

        if self.is_plus:
            self.clip_extra_context_tokens = 16

            self.image_proj_model = Resampler(
                dim=self.cross_attention_dim,
                depth=4,
                dim_head=64,
                heads=12,
                num_queries=self.clip_extra_context_tokens,
                embedding_dim=clip_embeddings_dim,
                output_dim=self.cross_attention_dim,
                ff_mult=4
            )
        else:
            self.clip_extra_context_tokens = state_dict["image_proj"]["proj.weight"].shape[0] // self.cross_attention_dim

            self.image_proj_model = ImageProjModel(
                cross_attention_dim=self.cross_attention_dim,
                clip_embeddings_dim=clip_embeddings_dim,
                clip_extra_context_tokens=self.clip_extra_context_tokens
            )

        self.load_ip_adapter(state_dict)

    def load_ip_adapter(self, state_dict):
        self.image_proj_model.load_state_dict(state_dict["image_proj"])
        self.ip_layers = To_KV(self.cross_attention_dim)
        self.ip_layers.load_state_dict(state_dict["ip_adapter"])

    @torch.inference_mode()
    def get_image_embeds(self, clip_vision_output):
        self.image_proj_model.cpu()

        if self.is_plus:
            from annotator.clipvision import clip_vision_h_uc
            cond = self.image_proj_model(clip_vision_output['hidden_states'][-2].to(device='cpu', dtype=torch.float32))
            uncond = self.image_proj_model(clip_vision_h_uc.to(cond))
            return cond, uncond

        clip_image_embeds = clip_vision_output['image_embeds'].to(device='cpu', dtype=torch.float32)
        image_prompt_embeds = self.image_proj_model(clip_image_embeds)
        # input zero vector for unconditional.
        uncond_image_prompt_embeds = self.image_proj_model(torch.zeros_like(clip_image_embeds))
        return image_prompt_embeds, uncond_image_prompt_embeds


def get_block(model, flag):
    return {
        'input': model.input_blocks, 'middle': [model.middle_block], 'output': model.output_blocks
    }[flag]


def attn_forward_hacked(self, x, context=None, **kwargs):
    batch_size, sequence_length, inner_dim = x.shape
    h = self.heads
    head_dim = inner_dim // h

    if context is None:
        context = x

    q = self.to_q(x)
    k = self.to_k(context)
    v = self.to_v(context)

    del context

    q, k, v = map(
        lambda t: t.view(batch_size, -1, h, head_dim).transpose(1, 2),
        (q, k, v),
    )

    out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False)
    out = out.transpose(1, 2).reshape(batch_size, -1, h * head_dim)

    del k, v

    for f in self.ipadapter_hacks:
        out = out + f(self, x, q)

    del q, x

    return self.to_out(out)


all_hacks = {}
current_model = None


def hack_blk(block, function, type):
    if not hasattr(block, 'ipadapter_hacks'):
        block.ipadapter_hacks = []

    if len(block.ipadapter_hacks) == 0:
        all_hacks[block] = block.forward
        block.forward = attn_forward_hacked.__get__(block, type)

    block.ipadapter_hacks.append(function)
    return


def set_model_attn2_replace(model, function, flag, id):
    from ldm.modules.attention import CrossAttention
    block = get_block(model, flag)[id][1].transformer_blocks[0].attn2
    hack_blk(block, function, CrossAttention)
    return


def set_model_patch_replace(model, function, flag, id, trans_id):
    from sgm.modules.attention import CrossAttention
    blk = get_block(model, flag)
    block = blk[id][1].transformer_blocks[trans_id].attn2
    hack_blk(block, function, CrossAttention)
    return


def clear_all_ip_adapter():
    global all_hacks, current_model
    for k, v in all_hacks.items():
        k.forward = v
        k.ipadapter_hacks = []
    all_hacks = {}
    current_model = None
    return


class PlugableIPAdapter(torch.nn.Module):
    def __init__(self, state_dict, clip_embeddings_dim, is_plus):
        super().__init__()
        self.sdxl = clip_embeddings_dim == 1280 and not is_plus
        self.is_plus = is_plus
        self.ipadapter = IPAdapterModel(state_dict, clip_embeddings_dim=clip_embeddings_dim, is_plus=is_plus)
        self.disable_memory_management = True
        self.dtype = None
        self.weight = 1.0
        self.cache = {}
        self.p_start = 0.0
        self.p_end = 1.0
        return

    def reset(self):
        self.cache = {}
        return

    @torch.no_grad()
    def hook(self, model, clip_vision_output, weight, start, end, dtype=torch.float32):
        global current_model
        current_model = model

        self.p_start = start
        self.p_end = end

        self.cache = {}

        self.weight = weight
        device = torch.device('cpu')
        self.dtype = dtype

        self.ipadapter.to(device, dtype=self.dtype)
        self.image_emb, self.uncond_image_emb = self.ipadapter.get_image_embeds(clip_vision_output)

        self.image_emb = self.image_emb.to(device, dtype=self.dtype)
        self.uncond_image_emb = self.uncond_image_emb.to(device, dtype=self.dtype)

        # From https://github.com/laksjdjf/IPAdapter-ComfyUI
        if not self.sdxl:
            number = 0  # index of to_kvs
            for id in [1, 2, 4, 5, 7, 8]:  # id of input_blocks that have cross attention
                set_model_attn2_replace(model, self.patch_forward(number), "input", id)
                number += 1
            for id in [3, 4, 5, 6, 7, 8, 9, 10, 11]:  # id of output_blocks that have cross attention
                set_model_attn2_replace(model, self.patch_forward(number), "output", id)
                number += 1
            set_model_attn2_replace(model, self.patch_forward(number), "middle", 0)
        else:
            number = 0
            for id in [4, 5, 7, 8]:  # id of input_blocks that have cross attention
                block_indices = range(2) if id in [4, 5] else range(10)  # transformer_depth
                for index in block_indices:
                    set_model_patch_replace(model, self.patch_forward(number), "input", id, index)
                    number += 1
            for id in range(6):  # id of output_blocks that have cross attention
                block_indices = range(2) if id in [3, 4, 5] else range(10)  # transformer_depth
                for index in block_indices:
                    set_model_patch_replace(model, self.patch_forward(number), "output", id, index)
                    number += 1
            for index in range(10):
                set_model_patch_replace(model, self.patch_forward(number), "middle", 0, index)
                number += 1

        return

    def call_ip(self, number, feat, device):
        if number in self.cache:
            return self.cache[number]
        else:
            ip = self.ipadapter.ip_layers.to_kvs[number](feat).to(device)
            self.cache[number] = ip
            return ip

    @torch.no_grad()
    def patch_forward(self, number):
        @torch.no_grad()
        def forward(attn_blk, x, q):
            batch_size, sequence_length, inner_dim = x.shape
            h = attn_blk.heads
            head_dim = inner_dim // h

            current_sampling_percent = getattr(current_model, 'current_sampling_percent', 0.5)
            if current_sampling_percent < self.p_start or current_sampling_percent > self.p_end:
                return 0

            cond_mark = current_model.cond_mark[:, :, :, 0].to(self.image_emb)
            cond_uncond_image_emb = self.image_emb * cond_mark + self.uncond_image_emb * (1 - cond_mark)
            ip_k = self.call_ip(number * 2, cond_uncond_image_emb, device=q.device)
            ip_v = self.call_ip(number * 2 + 1, cond_uncond_image_emb, device=q.device)

            ip_k, ip_v = map(
                lambda t: t.view(batch_size, -1, h, head_dim).transpose(1, 2),
                (ip_k, ip_v),
            )

            ip_out = torch.nn.functional.scaled_dot_product_attention(q, ip_k, ip_v, attn_mask=None, dropout_p=0.0, is_causal=False)
            ip_out = ip_out.transpose(1, 2).reshape(batch_size, -1, h * head_dim)

            return ip_out * self.weight
        return forward