Spaces:
Paused
Paused
File size: 13,574 Bytes
5c32cd0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 |
import math
import torch
import torch.nn as nn
# attention_channels of input, output, middle
SD_V12_CHANNELS = [320] * 4 + [640] * 4 + [1280] * 4 + [1280] * 6 + [640] * 6 + [320] * 6 + [1280] * 2
SD_XL_CHANNELS = [640] * 8 + [1280] * 40 + [1280] * 60 + [640] * 12 + [1280] * 20
class ImageProjModel(torch.nn.Module):
"""Projection Model"""
def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4):
super().__init__()
self.cross_attention_dim = cross_attention_dim
self.clip_extra_context_tokens = clip_extra_context_tokens
self.proj = torch.nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim)
self.norm = torch.nn.LayerNorm(cross_attention_dim)
def forward(self, image_embeds):
embeds = image_embeds
clip_extra_context_tokens = self.proj(embeds).reshape(-1, self.clip_extra_context_tokens,
self.cross_attention_dim)
clip_extra_context_tokens = self.norm(clip_extra_context_tokens)
return clip_extra_context_tokens
# Cross Attention to_k, to_v for IPAdapter
class To_KV(torch.nn.Module):
def __init__(self, cross_attention_dim):
super().__init__()
channels = SD_XL_CHANNELS if cross_attention_dim == 2048 else SD_V12_CHANNELS
self.to_kvs = torch.nn.ModuleList(
[torch.nn.Linear(cross_attention_dim, channel, bias=False) for channel in channels])
def load_state_dict(self, state_dict):
# input -> output -> middle
for i, key in enumerate(state_dict.keys()):
self.to_kvs[i].weight.data = state_dict[key]
def FeedForward(dim, mult=4):
inner_dim = int(dim * mult)
return nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, inner_dim, bias=False),
nn.GELU(),
nn.Linear(inner_dim, dim, bias=False),
)
def reshape_tensor(x, heads):
bs, length, width = x.shape
#(bs, length, width) --> (bs, length, n_heads, dim_per_head)
x = x.view(bs, length, heads, -1)
# (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
x = x.transpose(1, 2)
# (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head)
x = x.reshape(bs, heads, length, -1)
return x
class PerceiverAttention(nn.Module):
def __init__(self, *, dim, dim_head=64, heads=8):
super().__init__()
self.scale = dim_head**-0.5
self.dim_head = dim_head
self.heads = heads
inner_dim = dim_head * heads
self.norm1 = nn.LayerNorm(dim)
self.norm2 = nn.LayerNorm(dim)
self.to_q = nn.Linear(dim, inner_dim, bias=False)
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
self.to_out = nn.Linear(inner_dim, dim, bias=False)
def forward(self, x, latents):
"""
Args:
x (torch.Tensor): image features
shape (b, n1, D)
latent (torch.Tensor): latent features
shape (b, n2, D)
"""
x = self.norm1(x)
latents = self.norm2(latents)
b, l, _ = latents.shape
q = self.to_q(latents)
kv_input = torch.cat((x, latents), dim=-2)
k, v = self.to_kv(kv_input).chunk(2, dim=-1)
q = reshape_tensor(q, self.heads)
k = reshape_tensor(k, self.heads)
v = reshape_tensor(v, self.heads)
# attention
scale = 1 / math.sqrt(math.sqrt(self.dim_head))
weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
out = weight @ v
out = out.permute(0, 2, 1, 3).reshape(b, l, -1)
return self.to_out(out)
class Resampler(nn.Module):
def __init__(
self,
dim=1024,
depth=8,
dim_head=64,
heads=16,
num_queries=8,
embedding_dim=768,
output_dim=1024,
ff_mult=4,
):
super().__init__()
self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5)
self.proj_in = nn.Linear(embedding_dim, dim)
self.proj_out = nn.Linear(dim, output_dim)
self.norm_out = nn.LayerNorm(output_dim)
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(
nn.ModuleList(
[
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
FeedForward(dim=dim, mult=ff_mult),
]
)
)
def forward(self, x):
latents = self.latents.repeat(x.size(0), 1, 1)
x = self.proj_in(x)
for attn, ff in self.layers:
latents = attn(x, latents) + latents
latents = ff(latents) + latents
latents = self.proj_out(latents)
return self.norm_out(latents)
class IPAdapterModel(torch.nn.Module):
def __init__(self, state_dict, clip_embeddings_dim, is_plus):
super().__init__()
self.device = "cpu"
# cross_attention_dim is equal to text_encoder output
self.cross_attention_dim = state_dict["ip_adapter"]["1.to_k_ip.weight"].shape[1]
self.is_plus = is_plus
if self.is_plus:
self.clip_extra_context_tokens = 16
self.image_proj_model = Resampler(
dim=self.cross_attention_dim,
depth=4,
dim_head=64,
heads=12,
num_queries=self.clip_extra_context_tokens,
embedding_dim=clip_embeddings_dim,
output_dim=self.cross_attention_dim,
ff_mult=4
)
else:
self.clip_extra_context_tokens = state_dict["image_proj"]["proj.weight"].shape[0] // self.cross_attention_dim
self.image_proj_model = ImageProjModel(
cross_attention_dim=self.cross_attention_dim,
clip_embeddings_dim=clip_embeddings_dim,
clip_extra_context_tokens=self.clip_extra_context_tokens
)
self.load_ip_adapter(state_dict)
def load_ip_adapter(self, state_dict):
self.image_proj_model.load_state_dict(state_dict["image_proj"])
self.ip_layers = To_KV(self.cross_attention_dim)
self.ip_layers.load_state_dict(state_dict["ip_adapter"])
@torch.inference_mode()
def get_image_embeds(self, clip_vision_output):
self.image_proj_model.cpu()
if self.is_plus:
from annotator.clipvision import clip_vision_h_uc
cond = self.image_proj_model(clip_vision_output['hidden_states'][-2].to(device='cpu', dtype=torch.float32))
uncond = self.image_proj_model(clip_vision_h_uc.to(cond))
return cond, uncond
clip_image_embeds = clip_vision_output['image_embeds'].to(device='cpu', dtype=torch.float32)
image_prompt_embeds = self.image_proj_model(clip_image_embeds)
# input zero vector for unconditional.
uncond_image_prompt_embeds = self.image_proj_model(torch.zeros_like(clip_image_embeds))
return image_prompt_embeds, uncond_image_prompt_embeds
def get_block(model, flag):
return {
'input': model.input_blocks, 'middle': [model.middle_block], 'output': model.output_blocks
}[flag]
def attn_forward_hacked(self, x, context=None, **kwargs):
batch_size, sequence_length, inner_dim = x.shape
h = self.heads
head_dim = inner_dim // h
if context is None:
context = x
q = self.to_q(x)
k = self.to_k(context)
v = self.to_v(context)
del context
q, k, v = map(
lambda t: t.view(batch_size, -1, h, head_dim).transpose(1, 2),
(q, k, v),
)
out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False)
out = out.transpose(1, 2).reshape(batch_size, -1, h * head_dim)
del k, v
for f in self.ipadapter_hacks:
out = out + f(self, x, q)
del q, x
return self.to_out(out)
all_hacks = {}
current_model = None
def hack_blk(block, function, type):
if not hasattr(block, 'ipadapter_hacks'):
block.ipadapter_hacks = []
if len(block.ipadapter_hacks) == 0:
all_hacks[block] = block.forward
block.forward = attn_forward_hacked.__get__(block, type)
block.ipadapter_hacks.append(function)
return
def set_model_attn2_replace(model, function, flag, id):
from ldm.modules.attention import CrossAttention
block = get_block(model, flag)[id][1].transformer_blocks[0].attn2
hack_blk(block, function, CrossAttention)
return
def set_model_patch_replace(model, function, flag, id, trans_id):
from sgm.modules.attention import CrossAttention
blk = get_block(model, flag)
block = blk[id][1].transformer_blocks[trans_id].attn2
hack_blk(block, function, CrossAttention)
return
def clear_all_ip_adapter():
global all_hacks, current_model
for k, v in all_hacks.items():
k.forward = v
k.ipadapter_hacks = []
all_hacks = {}
current_model = None
return
class PlugableIPAdapter(torch.nn.Module):
def __init__(self, state_dict, clip_embeddings_dim, is_plus):
super().__init__()
self.sdxl = clip_embeddings_dim == 1280 and not is_plus
self.is_plus = is_plus
self.ipadapter = IPAdapterModel(state_dict, clip_embeddings_dim=clip_embeddings_dim, is_plus=is_plus)
self.disable_memory_management = True
self.dtype = None
self.weight = 1.0
self.cache = {}
self.p_start = 0.0
self.p_end = 1.0
return
def reset(self):
self.cache = {}
return
@torch.no_grad()
def hook(self, model, clip_vision_output, weight, start, end, dtype=torch.float32):
global current_model
current_model = model
self.p_start = start
self.p_end = end
self.cache = {}
self.weight = weight
device = torch.device('cpu')
self.dtype = dtype
self.ipadapter.to(device, dtype=self.dtype)
self.image_emb, self.uncond_image_emb = self.ipadapter.get_image_embeds(clip_vision_output)
self.image_emb = self.image_emb.to(device, dtype=self.dtype)
self.uncond_image_emb = self.uncond_image_emb.to(device, dtype=self.dtype)
# From https://github.com/laksjdjf/IPAdapter-ComfyUI
if not self.sdxl:
number = 0 # index of to_kvs
for id in [1, 2, 4, 5, 7, 8]: # id of input_blocks that have cross attention
set_model_attn2_replace(model, self.patch_forward(number), "input", id)
number += 1
for id in [3, 4, 5, 6, 7, 8, 9, 10, 11]: # id of output_blocks that have cross attention
set_model_attn2_replace(model, self.patch_forward(number), "output", id)
number += 1
set_model_attn2_replace(model, self.patch_forward(number), "middle", 0)
else:
number = 0
for id in [4, 5, 7, 8]: # id of input_blocks that have cross attention
block_indices = range(2) if id in [4, 5] else range(10) # transformer_depth
for index in block_indices:
set_model_patch_replace(model, self.patch_forward(number), "input", id, index)
number += 1
for id in range(6): # id of output_blocks that have cross attention
block_indices = range(2) if id in [3, 4, 5] else range(10) # transformer_depth
for index in block_indices:
set_model_patch_replace(model, self.patch_forward(number), "output", id, index)
number += 1
for index in range(10):
set_model_patch_replace(model, self.patch_forward(number), "middle", 0, index)
number += 1
return
def call_ip(self, number, feat, device):
if number in self.cache:
return self.cache[number]
else:
ip = self.ipadapter.ip_layers.to_kvs[number](feat).to(device)
self.cache[number] = ip
return ip
@torch.no_grad()
def patch_forward(self, number):
@torch.no_grad()
def forward(attn_blk, x, q):
batch_size, sequence_length, inner_dim = x.shape
h = attn_blk.heads
head_dim = inner_dim // h
current_sampling_percent = getattr(current_model, 'current_sampling_percent', 0.5)
if current_sampling_percent < self.p_start or current_sampling_percent > self.p_end:
return 0
cond_mark = current_model.cond_mark[:, :, :, 0].to(self.image_emb)
cond_uncond_image_emb = self.image_emb * cond_mark + self.uncond_image_emb * (1 - cond_mark)
ip_k = self.call_ip(number * 2, cond_uncond_image_emb, device=q.device)
ip_v = self.call_ip(number * 2 + 1, cond_uncond_image_emb, device=q.device)
ip_k, ip_v = map(
lambda t: t.view(batch_size, -1, h, head_dim).transpose(1, 2),
(ip_k, ip_v),
)
ip_out = torch.nn.functional.scaled_dot_product_attention(q, ip_k, ip_v, attn_mask=None, dropout_p=0.0, is_causal=False)
ip_out = ip_out.transpose(1, 2).reshape(batch_size, -1, h * head_dim)
return ip_out * self.weight
return forward
|