File size: 15,295 Bytes
5c32cd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
from enum import Enum
from typing import List, Any, Optional, Union, Tuple, Dict
import numpy as np
from modules import scripts, processing, shared
from scripts import global_state
from scripts.processor import preprocessor_sliders_config, model_free_preprocessors
from scripts.logging import logger

from modules.api import api


def get_api_version() -> int:
    return 2


class ControlMode(Enum):
    """
    The improved guess mode.
    """

    BALANCED = "Balanced"
    PROMPT = "My prompt is more important"
    CONTROL = "ControlNet is more important"


class ResizeMode(Enum):
    """
    Resize modes for ControlNet input images.
    """

    RESIZE = "Just Resize"
    INNER_FIT = "Crop and Resize"
    OUTER_FIT = "Resize and Fill"

    def int_value(self):
        if self == ResizeMode.RESIZE:
            return 0
        elif self == ResizeMode.INNER_FIT:
            return 1
        elif self == ResizeMode.OUTER_FIT:
            return 2
        assert False, "NOTREACHED"


resize_mode_aliases = {
    'Inner Fit (Scale to Fit)': 'Crop and Resize',
    'Outer Fit (Shrink to Fit)': 'Resize and Fill',
    'Scale to Fit (Inner Fit)': 'Crop and Resize',
    'Envelope (Outer Fit)': 'Resize and Fill',
}


def resize_mode_from_value(value: Union[str, int, ResizeMode]) -> ResizeMode:
    if isinstance(value, str):
        return ResizeMode(resize_mode_aliases.get(value, value))
    elif isinstance(value, int):
        assert value >= 0
        if value == 3:  # 'Just Resize (Latent upscale)'
            return ResizeMode.RESIZE

        if value >= len(ResizeMode):
            logger.warning(f'Unrecognized ResizeMode int value {value}. Fall back to RESIZE.')
            return ResizeMode.RESIZE

        return [e for e in ResizeMode][value]
    else:
        return value


def control_mode_from_value(value: Union[str, int, ControlMode]) -> ControlMode:
    if isinstance(value, str):
        return ControlMode(value)
    elif isinstance(value, int):
        return [e for e in ControlMode][value]
    else:
        return value


def visualize_inpaint_mask(img):
    if img.ndim == 3 and img.shape[2] == 4:
        result = img.copy()
        mask = result[:, :, 3]
        mask = 255 - mask // 2
        result[:, :, 3] = mask
        return np.ascontiguousarray(result.copy())
    return img


def pixel_perfect_resolution(
        image: np.ndarray,
        target_H: int,
        target_W: int,
        resize_mode: ResizeMode,
) -> int:
    """
    Calculate the estimated resolution for resizing an image while preserving aspect ratio.

    The function first calculates scaling factors for height and width of the image based on the target
    height and width. Then, based on the chosen resize mode, it either takes the smaller or the larger
    scaling factor to estimate the new resolution.

    If the resize mode is OUTER_FIT, the function uses the smaller scaling factor, ensuring the whole image
    fits within the target dimensions, potentially leaving some empty space.

    If the resize mode is not OUTER_FIT, the function uses the larger scaling factor, ensuring the target
    dimensions are fully filled, potentially cropping the image.

    After calculating the estimated resolution, the function prints some debugging information.

    Args:
        image (np.ndarray): A 3D numpy array representing an image. The dimensions represent [height, width, channels].
        target_H (int): The target height for the image.
        target_W (int): The target width for the image.
        resize_mode (ResizeMode): The mode for resizing.

    Returns:
        int: The estimated resolution after resizing.
    """
    raw_H, raw_W, _ = image.shape

    k0 = float(target_H) / float(raw_H)
    k1 = float(target_W) / float(raw_W)

    if resize_mode == ResizeMode.OUTER_FIT:
        estimation = min(k0, k1) * float(min(raw_H, raw_W))
    else:
        estimation = max(k0, k1) * float(min(raw_H, raw_W))

    logger.debug(f"Pixel Perfect Computation:")
    logger.debug(f"resize_mode = {resize_mode}")
    logger.debug(f"raw_H = {raw_H}")
    logger.debug(f"raw_W = {raw_W}")
    logger.debug(f"target_H = {target_H}")
    logger.debug(f"target_W = {target_W}")
    logger.debug(f"estimation = {estimation}")

    return int(np.round(estimation))


InputImage = Union[np.ndarray, str]
InputImage = Union[Dict[str, InputImage], Tuple[InputImage, InputImage], InputImage]


class ControlNetUnit:
    """
    Represents an entire ControlNet processing unit.
    """

    def __init__(
            self,
            enabled: bool = True,
            module: Optional[str] = None,
            model: Optional[str] = None,
            weight: float = 1.0,
            image: Optional[InputImage] = None,
            resize_mode: Union[ResizeMode, int, str] = ResizeMode.INNER_FIT,
            low_vram: bool = False,
            processor_res: int = -1,
            threshold_a: float = -1,
            threshold_b: float = -1,
            guidance_start: float = 0.0,
            guidance_end: float = 1.0,
            pixel_perfect: bool = False,
            control_mode: Union[ControlMode, int, str] = ControlMode.BALANCED,
            **_kwargs,
    ):
        self.enabled = enabled
        self.module = module
        self.model = model
        self.weight = weight
        self.image = image
        self.resize_mode = resize_mode
        self.low_vram = low_vram
        self.processor_res = processor_res
        self.threshold_a = threshold_a
        self.threshold_b = threshold_b
        self.guidance_start = guidance_start
        self.guidance_end = guidance_end
        self.pixel_perfect = pixel_perfect
        self.control_mode = control_mode

    def __eq__(self, other):
        if not isinstance(other, ControlNetUnit):
            return False

        return vars(self) == vars(other)


def to_base64_nparray(encoding: str):
    """
    Convert a base64 image into the image type the extension uses
    """

    return np.array(api.decode_base64_to_image(encoding)).astype('uint8')


def get_all_units_in_processing(p: processing.StableDiffusionProcessing) -> List[ControlNetUnit]:
    """
    Fetch ControlNet processing units from a StableDiffusionProcessing.
    """

    return get_all_units(p.scripts, p.script_args)


def get_all_units(script_runner: scripts.ScriptRunner, script_args: List[Any]) -> List[ControlNetUnit]:
    """
    Fetch ControlNet processing units from an existing script runner.
    Use this function to fetch units from the list of all scripts arguments.
    """

    cn_script = find_cn_script(script_runner)
    if cn_script:
        return get_all_units_from(script_args[cn_script.args_from:cn_script.args_to])

    return []


def get_all_units_from(script_args: List[Any]) -> List[ControlNetUnit]:
    """
    Fetch ControlNet processing units from ControlNet script arguments.
    Use `external_code.get_all_units` to fetch units from the list of all scripts arguments.
    """

    def is_stale_unit(script_arg: Any) -> bool:
        """ Returns whether the script_arg is potentially an stale version of
        ControlNetUnit created before module reload."""
        return (
                'ControlNetUnit' in type(script_arg).__name__ and
                not isinstance(script_arg, ControlNetUnit)
        )

    def is_controlnet_unit(script_arg: Any) -> bool:
        """ Returns whether the script_arg is ControlNetUnit or anything that
        can be treated like ControlNetUnit. """
        return (
                isinstance(script_arg, (ControlNetUnit, dict)) or
                (
                        hasattr(script_arg, '__dict__') and
                        set(vars(ControlNetUnit()).keys()).issubset(
                            set(vars(script_arg).keys()))
                )
        )

    all_units = [
        to_processing_unit(script_arg)
        for script_arg in script_args
        if is_controlnet_unit(script_arg)
    ]
    if not all_units:
        logger.warning(
            "No ControlNetUnit detected in args. It is very likely that you are having an extension conflict."
            f"Here are args received by ControlNet: {script_args}.")
    if any(is_stale_unit(script_arg) for script_arg in script_args):
        logger.debug(
            "Stale version of ControlNetUnit detected. The ControlNetUnit received"
            "by ControlNet is created before the newest load of ControlNet extension."
            "They will still be used by ControlNet as long as they provide same fields"
            "defined in the newest version of ControlNetUnit."
        )

    return all_units


def get_single_unit_from(script_args: List[Any], index: int = 0) -> Optional[ControlNetUnit]:
    """
    Fetch a single ControlNet processing unit from ControlNet script arguments.
    The list must not contain script positional arguments. It must only contain processing units.
    """

    i = 0
    while i < len(script_args) and index >= 0:
        if index == 0 and script_args[i] is not None:
            return to_processing_unit(script_args[i])
        i += 1

        index -= 1

    return None


def get_max_models_num():
    """
    Fetch the maximum number of allowed ControlNet models.
    """

    max_models_num = shared.opts.data.get("control_net_unit_count", 3)
    return max_models_num


def to_processing_unit(unit: Union[Dict[str, Any], ControlNetUnit]) -> ControlNetUnit:
    """
    Convert different types to processing unit.
    If `unit` is a dict, alternative keys are supported. See `ext_compat_keys` in implementation for details.
    """

    ext_compat_keys = {
        'guessmode': 'guess_mode',
        'guidance': 'guidance_end',
        'lowvram': 'low_vram',
        'input_image': 'image'
    }

    if isinstance(unit, dict):
        unit = {ext_compat_keys.get(k, k): v for k, v in unit.items()}

        mask = None
        if 'mask' in unit:
            mask = unit['mask']
            del unit['mask']

        if 'image' in unit and not isinstance(unit['image'], dict):
            unit['image'] = {'image': unit['image'], 'mask': mask} if mask is not None else unit['image'] if unit[
                'image'] else None

        if 'guess_mode' in unit:
            logger.warning('Guess Mode is removed since 1.1.136. Please use Control Mode instead.')

        unit = ControlNetUnit(**unit)

    # temporary, check #602
    # assert isinstance(unit, ControlNetUnit), f'bad argument to controlnet extension: {unit}\nexpected Union[dict[str, Any], ControlNetUnit]'
    return unit


def update_cn_script_in_processing(
        p: processing.StableDiffusionProcessing,
        cn_units: List[ControlNetUnit],
        **_kwargs,  # for backwards compatibility
):
    """
    Update the arguments of the ControlNet script in `p.script_args` in place, reading from `cn_units`.
    `cn_units` and its elements are not modified. You can call this function repeatedly, as many times as you want.

    Does not update `p.script_args` if any of the folling is true:
    - ControlNet is not present in `p.scripts`
    - `p.script_args` is not filled with script arguments for scripts that are processed before ControlNet
    """

    cn_units_type = type(cn_units) if type(cn_units) in (list, tuple) else list
    script_args = list(p.script_args)
    update_cn_script_in_place(p.scripts, script_args, cn_units)
    p.script_args = cn_units_type(script_args)


def update_cn_script_in_place(
        script_runner: scripts.ScriptRunner,
        script_args: List[Any],
        cn_units: List[ControlNetUnit],
        **_kwargs,  # for backwards compatibility
):
    """
    Update the arguments of the ControlNet script in `script_args` in place, reading from `cn_units`.
    `cn_units` and its elements are not modified. You can call this function repeatedly, as many times as you want.

    Does not update `script_args` if any of the folling is true:
    - ControlNet is not present in `script_runner`
    - `script_args` is not filled with script arguments for scripts that are processed before ControlNet
    """

    cn_script = find_cn_script(script_runner)
    if cn_script is None or len(script_args) < cn_script.args_from:
        return

    # fill in remaining parameters to satisfy max models, just in case script needs it.
    max_models = shared.opts.data.get("control_net_unit_count", 3)
    cn_units = cn_units + [ControlNetUnit(enabled=False)] * max(max_models - len(cn_units), 0)

    cn_script_args_diff = 0
    for script in script_runner.alwayson_scripts:
        if script is cn_script:
            cn_script_args_diff = len(cn_units) - (cn_script.args_to - cn_script.args_from)
            script_args[script.args_from:script.args_to] = cn_units
            script.args_to = script.args_from + len(cn_units)
        else:
            script.args_from += cn_script_args_diff
            script.args_to += cn_script_args_diff


def get_models(update: bool = False) -> List[str]:
    """
    Fetch the list of available models.
    Each value is a valid candidate of `ControlNetUnit.model`.

    Keyword arguments:
    update -- Whether to refresh the list from disk. (default False)
    """

    if update:
        global_state.update_cn_models()

    return list(global_state.cn_models_names.values())


def get_modules(alias_names: bool = False) -> List[str]:
    """
    Fetch the list of available preprocessors.
    Each value is a valid candidate of `ControlNetUnit.module`.

    Keyword arguments:
    alias_names -- Whether to get the ui alias names instead of internal keys
    """

    modules = list(global_state.cn_preprocessor_modules.keys())

    if alias_names:
        modules = [global_state.preprocessor_aliases.get(module, module) for module in modules]

    return modules


def get_modules_detail(alias_names: bool = False) -> Dict[str, Any]:
    """
    get the detail of all preprocessors including
    sliders: the slider config in Auto1111 webUI

    Keyword arguments:
    alias_names -- Whether to get the module detail with alias names instead of internal keys
    """

    _module_detail = {}
    _module_list = get_modules(False)
    _module_list_alias = get_modules(True)

    _output_list = _module_list if not alias_names else _module_list_alias
    for index, module in enumerate(_output_list):
        if _module_list[index] in preprocessor_sliders_config:
            _module_detail[module] = {
                "model_free": module in model_free_preprocessors,
                "sliders": preprocessor_sliders_config[_module_list[index]]
            }
        else:
            _module_detail[module] = {
                "model_free": False,
                "sliders": []
            }

    return _module_detail


def find_cn_script(script_runner: scripts.ScriptRunner) -> Optional[scripts.Script]:
    """
    Find the ControlNet script in `script_runner`. Returns `None` if `script_runner` does not contain a ControlNet script.
    """

    if script_runner is None:
        return None

    for script in script_runner.alwayson_scripts:
        if is_cn_script(script):
            return script


def is_cn_script(script: scripts.Script) -> bool:
    """
    Determine whether `script` is a ControlNet script.
    """

    return script.title().lower() == 'controlnet'