Spaces:
Paused
Paused
File size: 15,295 Bytes
5c32cd0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 |
from enum import Enum
from typing import List, Any, Optional, Union, Tuple, Dict
import numpy as np
from modules import scripts, processing, shared
from scripts import global_state
from scripts.processor import preprocessor_sliders_config, model_free_preprocessors
from scripts.logging import logger
from modules.api import api
def get_api_version() -> int:
return 2
class ControlMode(Enum):
"""
The improved guess mode.
"""
BALANCED = "Balanced"
PROMPT = "My prompt is more important"
CONTROL = "ControlNet is more important"
class ResizeMode(Enum):
"""
Resize modes for ControlNet input images.
"""
RESIZE = "Just Resize"
INNER_FIT = "Crop and Resize"
OUTER_FIT = "Resize and Fill"
def int_value(self):
if self == ResizeMode.RESIZE:
return 0
elif self == ResizeMode.INNER_FIT:
return 1
elif self == ResizeMode.OUTER_FIT:
return 2
assert False, "NOTREACHED"
resize_mode_aliases = {
'Inner Fit (Scale to Fit)': 'Crop and Resize',
'Outer Fit (Shrink to Fit)': 'Resize and Fill',
'Scale to Fit (Inner Fit)': 'Crop and Resize',
'Envelope (Outer Fit)': 'Resize and Fill',
}
def resize_mode_from_value(value: Union[str, int, ResizeMode]) -> ResizeMode:
if isinstance(value, str):
return ResizeMode(resize_mode_aliases.get(value, value))
elif isinstance(value, int):
assert value >= 0
if value == 3: # 'Just Resize (Latent upscale)'
return ResizeMode.RESIZE
if value >= len(ResizeMode):
logger.warning(f'Unrecognized ResizeMode int value {value}. Fall back to RESIZE.')
return ResizeMode.RESIZE
return [e for e in ResizeMode][value]
else:
return value
def control_mode_from_value(value: Union[str, int, ControlMode]) -> ControlMode:
if isinstance(value, str):
return ControlMode(value)
elif isinstance(value, int):
return [e for e in ControlMode][value]
else:
return value
def visualize_inpaint_mask(img):
if img.ndim == 3 and img.shape[2] == 4:
result = img.copy()
mask = result[:, :, 3]
mask = 255 - mask // 2
result[:, :, 3] = mask
return np.ascontiguousarray(result.copy())
return img
def pixel_perfect_resolution(
image: np.ndarray,
target_H: int,
target_W: int,
resize_mode: ResizeMode,
) -> int:
"""
Calculate the estimated resolution for resizing an image while preserving aspect ratio.
The function first calculates scaling factors for height and width of the image based on the target
height and width. Then, based on the chosen resize mode, it either takes the smaller or the larger
scaling factor to estimate the new resolution.
If the resize mode is OUTER_FIT, the function uses the smaller scaling factor, ensuring the whole image
fits within the target dimensions, potentially leaving some empty space.
If the resize mode is not OUTER_FIT, the function uses the larger scaling factor, ensuring the target
dimensions are fully filled, potentially cropping the image.
After calculating the estimated resolution, the function prints some debugging information.
Args:
image (np.ndarray): A 3D numpy array representing an image. The dimensions represent [height, width, channels].
target_H (int): The target height for the image.
target_W (int): The target width for the image.
resize_mode (ResizeMode): The mode for resizing.
Returns:
int: The estimated resolution after resizing.
"""
raw_H, raw_W, _ = image.shape
k0 = float(target_H) / float(raw_H)
k1 = float(target_W) / float(raw_W)
if resize_mode == ResizeMode.OUTER_FIT:
estimation = min(k0, k1) * float(min(raw_H, raw_W))
else:
estimation = max(k0, k1) * float(min(raw_H, raw_W))
logger.debug(f"Pixel Perfect Computation:")
logger.debug(f"resize_mode = {resize_mode}")
logger.debug(f"raw_H = {raw_H}")
logger.debug(f"raw_W = {raw_W}")
logger.debug(f"target_H = {target_H}")
logger.debug(f"target_W = {target_W}")
logger.debug(f"estimation = {estimation}")
return int(np.round(estimation))
InputImage = Union[np.ndarray, str]
InputImage = Union[Dict[str, InputImage], Tuple[InputImage, InputImage], InputImage]
class ControlNetUnit:
"""
Represents an entire ControlNet processing unit.
"""
def __init__(
self,
enabled: bool = True,
module: Optional[str] = None,
model: Optional[str] = None,
weight: float = 1.0,
image: Optional[InputImage] = None,
resize_mode: Union[ResizeMode, int, str] = ResizeMode.INNER_FIT,
low_vram: bool = False,
processor_res: int = -1,
threshold_a: float = -1,
threshold_b: float = -1,
guidance_start: float = 0.0,
guidance_end: float = 1.0,
pixel_perfect: bool = False,
control_mode: Union[ControlMode, int, str] = ControlMode.BALANCED,
**_kwargs,
):
self.enabled = enabled
self.module = module
self.model = model
self.weight = weight
self.image = image
self.resize_mode = resize_mode
self.low_vram = low_vram
self.processor_res = processor_res
self.threshold_a = threshold_a
self.threshold_b = threshold_b
self.guidance_start = guidance_start
self.guidance_end = guidance_end
self.pixel_perfect = pixel_perfect
self.control_mode = control_mode
def __eq__(self, other):
if not isinstance(other, ControlNetUnit):
return False
return vars(self) == vars(other)
def to_base64_nparray(encoding: str):
"""
Convert a base64 image into the image type the extension uses
"""
return np.array(api.decode_base64_to_image(encoding)).astype('uint8')
def get_all_units_in_processing(p: processing.StableDiffusionProcessing) -> List[ControlNetUnit]:
"""
Fetch ControlNet processing units from a StableDiffusionProcessing.
"""
return get_all_units(p.scripts, p.script_args)
def get_all_units(script_runner: scripts.ScriptRunner, script_args: List[Any]) -> List[ControlNetUnit]:
"""
Fetch ControlNet processing units from an existing script runner.
Use this function to fetch units from the list of all scripts arguments.
"""
cn_script = find_cn_script(script_runner)
if cn_script:
return get_all_units_from(script_args[cn_script.args_from:cn_script.args_to])
return []
def get_all_units_from(script_args: List[Any]) -> List[ControlNetUnit]:
"""
Fetch ControlNet processing units from ControlNet script arguments.
Use `external_code.get_all_units` to fetch units from the list of all scripts arguments.
"""
def is_stale_unit(script_arg: Any) -> bool:
""" Returns whether the script_arg is potentially an stale version of
ControlNetUnit created before module reload."""
return (
'ControlNetUnit' in type(script_arg).__name__ and
not isinstance(script_arg, ControlNetUnit)
)
def is_controlnet_unit(script_arg: Any) -> bool:
""" Returns whether the script_arg is ControlNetUnit or anything that
can be treated like ControlNetUnit. """
return (
isinstance(script_arg, (ControlNetUnit, dict)) or
(
hasattr(script_arg, '__dict__') and
set(vars(ControlNetUnit()).keys()).issubset(
set(vars(script_arg).keys()))
)
)
all_units = [
to_processing_unit(script_arg)
for script_arg in script_args
if is_controlnet_unit(script_arg)
]
if not all_units:
logger.warning(
"No ControlNetUnit detected in args. It is very likely that you are having an extension conflict."
f"Here are args received by ControlNet: {script_args}.")
if any(is_stale_unit(script_arg) for script_arg in script_args):
logger.debug(
"Stale version of ControlNetUnit detected. The ControlNetUnit received"
"by ControlNet is created before the newest load of ControlNet extension."
"They will still be used by ControlNet as long as they provide same fields"
"defined in the newest version of ControlNetUnit."
)
return all_units
def get_single_unit_from(script_args: List[Any], index: int = 0) -> Optional[ControlNetUnit]:
"""
Fetch a single ControlNet processing unit from ControlNet script arguments.
The list must not contain script positional arguments. It must only contain processing units.
"""
i = 0
while i < len(script_args) and index >= 0:
if index == 0 and script_args[i] is not None:
return to_processing_unit(script_args[i])
i += 1
index -= 1
return None
def get_max_models_num():
"""
Fetch the maximum number of allowed ControlNet models.
"""
max_models_num = shared.opts.data.get("control_net_unit_count", 3)
return max_models_num
def to_processing_unit(unit: Union[Dict[str, Any], ControlNetUnit]) -> ControlNetUnit:
"""
Convert different types to processing unit.
If `unit` is a dict, alternative keys are supported. See `ext_compat_keys` in implementation for details.
"""
ext_compat_keys = {
'guessmode': 'guess_mode',
'guidance': 'guidance_end',
'lowvram': 'low_vram',
'input_image': 'image'
}
if isinstance(unit, dict):
unit = {ext_compat_keys.get(k, k): v for k, v in unit.items()}
mask = None
if 'mask' in unit:
mask = unit['mask']
del unit['mask']
if 'image' in unit and not isinstance(unit['image'], dict):
unit['image'] = {'image': unit['image'], 'mask': mask} if mask is not None else unit['image'] if unit[
'image'] else None
if 'guess_mode' in unit:
logger.warning('Guess Mode is removed since 1.1.136. Please use Control Mode instead.')
unit = ControlNetUnit(**unit)
# temporary, check #602
# assert isinstance(unit, ControlNetUnit), f'bad argument to controlnet extension: {unit}\nexpected Union[dict[str, Any], ControlNetUnit]'
return unit
def update_cn_script_in_processing(
p: processing.StableDiffusionProcessing,
cn_units: List[ControlNetUnit],
**_kwargs, # for backwards compatibility
):
"""
Update the arguments of the ControlNet script in `p.script_args` in place, reading from `cn_units`.
`cn_units` and its elements are not modified. You can call this function repeatedly, as many times as you want.
Does not update `p.script_args` if any of the folling is true:
- ControlNet is not present in `p.scripts`
- `p.script_args` is not filled with script arguments for scripts that are processed before ControlNet
"""
cn_units_type = type(cn_units) if type(cn_units) in (list, tuple) else list
script_args = list(p.script_args)
update_cn_script_in_place(p.scripts, script_args, cn_units)
p.script_args = cn_units_type(script_args)
def update_cn_script_in_place(
script_runner: scripts.ScriptRunner,
script_args: List[Any],
cn_units: List[ControlNetUnit],
**_kwargs, # for backwards compatibility
):
"""
Update the arguments of the ControlNet script in `script_args` in place, reading from `cn_units`.
`cn_units` and its elements are not modified. You can call this function repeatedly, as many times as you want.
Does not update `script_args` if any of the folling is true:
- ControlNet is not present in `script_runner`
- `script_args` is not filled with script arguments for scripts that are processed before ControlNet
"""
cn_script = find_cn_script(script_runner)
if cn_script is None or len(script_args) < cn_script.args_from:
return
# fill in remaining parameters to satisfy max models, just in case script needs it.
max_models = shared.opts.data.get("control_net_unit_count", 3)
cn_units = cn_units + [ControlNetUnit(enabled=False)] * max(max_models - len(cn_units), 0)
cn_script_args_diff = 0
for script in script_runner.alwayson_scripts:
if script is cn_script:
cn_script_args_diff = len(cn_units) - (cn_script.args_to - cn_script.args_from)
script_args[script.args_from:script.args_to] = cn_units
script.args_to = script.args_from + len(cn_units)
else:
script.args_from += cn_script_args_diff
script.args_to += cn_script_args_diff
def get_models(update: bool = False) -> List[str]:
"""
Fetch the list of available models.
Each value is a valid candidate of `ControlNetUnit.model`.
Keyword arguments:
update -- Whether to refresh the list from disk. (default False)
"""
if update:
global_state.update_cn_models()
return list(global_state.cn_models_names.values())
def get_modules(alias_names: bool = False) -> List[str]:
"""
Fetch the list of available preprocessors.
Each value is a valid candidate of `ControlNetUnit.module`.
Keyword arguments:
alias_names -- Whether to get the ui alias names instead of internal keys
"""
modules = list(global_state.cn_preprocessor_modules.keys())
if alias_names:
modules = [global_state.preprocessor_aliases.get(module, module) for module in modules]
return modules
def get_modules_detail(alias_names: bool = False) -> Dict[str, Any]:
"""
get the detail of all preprocessors including
sliders: the slider config in Auto1111 webUI
Keyword arguments:
alias_names -- Whether to get the module detail with alias names instead of internal keys
"""
_module_detail = {}
_module_list = get_modules(False)
_module_list_alias = get_modules(True)
_output_list = _module_list if not alias_names else _module_list_alias
for index, module in enumerate(_output_list):
if _module_list[index] in preprocessor_sliders_config:
_module_detail[module] = {
"model_free": module in model_free_preprocessors,
"sliders": preprocessor_sliders_config[_module_list[index]]
}
else:
_module_detail[module] = {
"model_free": False,
"sliders": []
}
return _module_detail
def find_cn_script(script_runner: scripts.ScriptRunner) -> Optional[scripts.Script]:
"""
Find the ControlNet script in `script_runner`. Returns `None` if `script_runner` does not contain a ControlNet script.
"""
if script_runner is None:
return None
for script in script_runner.alwayson_scripts:
if is_cn_script(script):
return script
def is_cn_script(script: scripts.Script) -> bool:
"""
Determine whether `script` is a ControlNet script.
"""
return script.title().lower() == 'controlnet'
|