File size: 9,759 Bytes
c9ea4f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import os
import gc
import time

import numpy as np
import torch
import torchvision
from PIL import Image
from einops import rearrange, repeat
from omegaconf import OmegaConf
import safetensors.torch

from ldm.models.diffusion.ddim import DDIMSampler
from ldm.util import instantiate_from_config, ismap
from modules import shared, sd_hijack, devices

cached_ldsr_model: torch.nn.Module = None


# Create LDSR Class
class LDSR:
    def load_model_from_config(self, half_attention):
        global cached_ldsr_model

        if shared.opts.ldsr_cached and cached_ldsr_model is not None:
            print("Loading model from cache")
            model: torch.nn.Module = cached_ldsr_model
        else:
            print(f"Loading model from {self.modelPath}")
            _, extension = os.path.splitext(self.modelPath)
            if extension.lower() == ".safetensors":
                pl_sd = safetensors.torch.load_file(self.modelPath, device="cpu")
            else:
                pl_sd = torch.load(self.modelPath, map_location="cpu")
            sd = pl_sd["state_dict"] if "state_dict" in pl_sd else pl_sd
            config = OmegaConf.load(self.yamlPath)
            config.model.target = "ldm.models.diffusion.ddpm.LatentDiffusionV1"
            model: torch.nn.Module = instantiate_from_config(config.model)
            model.load_state_dict(sd, strict=False)
            model = model.to(shared.device)
            if half_attention:
                model = model.half()
            if shared.cmd_opts.opt_channelslast:
                model = model.to(memory_format=torch.channels_last)

            sd_hijack.model_hijack.hijack(model) # apply optimization
            model.eval()

            if shared.opts.ldsr_cached:
                cached_ldsr_model = model

        return {"model": model}

    def __init__(self, model_path, yaml_path):
        self.modelPath = model_path
        self.yamlPath = yaml_path

    @staticmethod
    def run(model, selected_path, custom_steps, eta):
        example = get_cond(selected_path)

        n_runs = 1
        guider = None
        ckwargs = None
        ddim_use_x0_pred = False
        temperature = 1.
        eta = eta
        custom_shape = None

        height, width = example["image"].shape[1:3]
        split_input = height >= 128 and width >= 128

        if split_input:
            ks = 128
            stride = 64
            vqf = 4  #
            model.split_input_params = {"ks": (ks, ks), "stride": (stride, stride),
                                        "vqf": vqf,
                                        "patch_distributed_vq": True,
                                        "tie_braker": False,
                                        "clip_max_weight": 0.5,
                                        "clip_min_weight": 0.01,
                                        "clip_max_tie_weight": 0.5,
                                        "clip_min_tie_weight": 0.01}
        else:
            if hasattr(model, "split_input_params"):
                delattr(model, "split_input_params")

        x_t = None
        logs = None
        for _ in range(n_runs):
            if custom_shape is not None:
                x_t = torch.randn(1, custom_shape[1], custom_shape[2], custom_shape[3]).to(model.device)
                x_t = repeat(x_t, '1 c h w -> b c h w', b=custom_shape[0])

            logs = make_convolutional_sample(example, model,
                                             custom_steps=custom_steps,
                                             eta=eta, quantize_x0=False,
                                             custom_shape=custom_shape,
                                             temperature=temperature, noise_dropout=0.,
                                             corrector=guider, corrector_kwargs=ckwargs, x_T=x_t,
                                             ddim_use_x0_pred=ddim_use_x0_pred
                                             )
        return logs

    def super_resolution(self, image, steps=100, target_scale=2, half_attention=False):
        model = self.load_model_from_config(half_attention)

        # Run settings
        diffusion_steps = int(steps)
        eta = 1.0


        gc.collect()
        devices.torch_gc()

        im_og = image
        width_og, height_og = im_og.size
        # If we can adjust the max upscale size, then the 4 below should be our variable
        down_sample_rate = target_scale / 4
        wd = width_og * down_sample_rate
        hd = height_og * down_sample_rate
        width_downsampled_pre = int(np.ceil(wd))
        height_downsampled_pre = int(np.ceil(hd))

        if down_sample_rate != 1:
            print(
                f'Downsampling from [{width_og}, {height_og}] to [{width_downsampled_pre}, {height_downsampled_pre}]')
            im_og = im_og.resize((width_downsampled_pre, height_downsampled_pre), Image.LANCZOS)
        else:
            print(f"Down sample rate is 1 from {target_scale} / 4 (Not downsampling)")

        # pad width and height to multiples of 64, pads with the edge values of image to avoid artifacts
        pad_w, pad_h = np.max(((2, 2), np.ceil(np.array(im_og.size) / 64).astype(int)), axis=0) * 64 - im_og.size
        im_padded = Image.fromarray(np.pad(np.array(im_og), ((0, pad_h), (0, pad_w), (0, 0)), mode='edge'))

        logs = self.run(model["model"], im_padded, diffusion_steps, eta)

        sample = logs["sample"]
        sample = sample.detach().cpu()
        sample = torch.clamp(sample, -1., 1.)
        sample = (sample + 1.) / 2. * 255
        sample = sample.numpy().astype(np.uint8)
        sample = np.transpose(sample, (0, 2, 3, 1))
        a = Image.fromarray(sample[0])

        # remove padding
        a = a.crop((0, 0) + tuple(np.array(im_og.size) * 4))

        del model
        gc.collect()
        devices.torch_gc()

        return a


def get_cond(selected_path):
    example = {}
    up_f = 4
    c = selected_path.convert('RGB')
    c = torch.unsqueeze(torchvision.transforms.ToTensor()(c), 0)
    c_up = torchvision.transforms.functional.resize(c, size=[up_f * c.shape[2], up_f * c.shape[3]],
                                                    antialias=True)
    c_up = rearrange(c_up, '1 c h w -> 1 h w c')
    c = rearrange(c, '1 c h w -> 1 h w c')
    c = 2. * c - 1.

    c = c.to(shared.device)
    example["LR_image"] = c
    example["image"] = c_up

    return example


@torch.no_grad()
def convsample_ddim(model, cond, steps, shape, eta=1.0, callback=None, normals_sequence=None,
                    mask=None, x0=None, quantize_x0=False, temperature=1., score_corrector=None,
                    corrector_kwargs=None, x_t=None
                    ):
    ddim = DDIMSampler(model)
    bs = shape[0]
    shape = shape[1:]
    print(f"Sampling with eta = {eta}; steps: {steps}")
    samples, intermediates = ddim.sample(steps, batch_size=bs, shape=shape, conditioning=cond, callback=callback,
                                         normals_sequence=normals_sequence, quantize_x0=quantize_x0, eta=eta,
                                         mask=mask, x0=x0, temperature=temperature, verbose=False,
                                         score_corrector=score_corrector,
                                         corrector_kwargs=corrector_kwargs, x_t=x_t)

    return samples, intermediates


@torch.no_grad()
def make_convolutional_sample(batch, model, custom_steps=None, eta=1.0, quantize_x0=False, custom_shape=None, temperature=1., noise_dropout=0., corrector=None,
                              corrector_kwargs=None, x_T=None, ddim_use_x0_pred=False):
    log = {}

    z, c, x, xrec, xc = model.get_input(batch, model.first_stage_key,
                                        return_first_stage_outputs=True,
                                        force_c_encode=not (hasattr(model, 'split_input_params')
                                                            and model.cond_stage_key == 'coordinates_bbox'),
                                        return_original_cond=True)

    if custom_shape is not None:
        z = torch.randn(custom_shape)
        print(f"Generating {custom_shape[0]} samples of shape {custom_shape[1:]}")

    z0 = None

    log["input"] = x
    log["reconstruction"] = xrec

    if ismap(xc):
        log["original_conditioning"] = model.to_rgb(xc)
        if hasattr(model, 'cond_stage_key'):
            log[model.cond_stage_key] = model.to_rgb(xc)

    else:
        log["original_conditioning"] = xc if xc is not None else torch.zeros_like(x)
        if model.cond_stage_model:
            log[model.cond_stage_key] = xc if xc is not None else torch.zeros_like(x)
            if model.cond_stage_key == 'class_label':
                log[model.cond_stage_key] = xc[model.cond_stage_key]

    with model.ema_scope("Plotting"):
        t0 = time.time()

        sample, intermediates = convsample_ddim(model, c, steps=custom_steps, shape=z.shape,
                                                eta=eta,
                                                quantize_x0=quantize_x0, mask=None, x0=z0,
                                                temperature=temperature, score_corrector=corrector, corrector_kwargs=corrector_kwargs,
                                                x_t=x_T)
        t1 = time.time()

        if ddim_use_x0_pred:
            sample = intermediates['pred_x0'][-1]

    x_sample = model.decode_first_stage(sample)

    try:
        x_sample_noquant = model.decode_first_stage(sample, force_not_quantize=True)
        log["sample_noquant"] = x_sample_noquant
        log["sample_diff"] = torch.abs(x_sample_noquant - x_sample)
    except Exception:
        pass

    log["sample"] = x_sample
    log["time"] = t1 - t0

    return log