Spaces:
Paused
Paused
File size: 2,599 Bytes
3f9c56c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
import importlib
utils = importlib.import_module('extensions.sd-webui-controlnet.tests.utils', 'utils')
utils.setup_test_env()
from scripts.utils import ndarray_lru_cache, get_unique_axis0
import unittest
import numpy as np
class TestNumpyLruCache(unittest.TestCase):
def setUp(self):
self.arr1 = np.array([1, 2, 3, 4, 5])
self.arr2 = np.array([1, 2, 3, 4, 5])
@ndarray_lru_cache(max_size=128)
def add_one(self, arr):
return arr + 1
def test_same_array(self):
# Test that the decorator works with numpy arrays.
result1 = self.add_one(self.arr1)
result2 = self.add_one(self.arr1)
# If caching is working correctly, these should be the same object.
self.assertIs(result1, result2)
def test_different_array_same_data(self):
# Test that the decorator works with different numpy arrays with the same data.
result1 = self.add_one(self.arr1)
result2 = self.add_one(self.arr2)
# If caching is working correctly, these should be the same object.
self.assertIs(result1, result2)
def test_cache_size(self):
# Test that the cache size limit is respected.
arrs = [np.array([i]) for i in range(150)]
# Add all arrays to the cache.
result1 = self.add_one(arrs[0])
for arr in arrs[1:]:
self.add_one(arr)
# Check that the first array is no longer in the cache.
result2 = self.add_one(arrs[0])
# If the cache size limit is working correctly, these should not be the same object.
self.assertIsNot(result1, result2)
def test_large_array(self):
# Create two large arrays with the same elements in the beginning and end, but one different element in the middle.
arr1 = np.ones(10000)
arr2 = np.ones(10000)
arr2[len(arr2)//2] = 0
result1 = self.add_one(arr1)
result2 = self.add_one(arr2)
# If hashing is working correctly, these should not be the same object because the input arrays are not equal.
self.assertIsNot(result1, result2)
class TestUniqueFunctions(unittest.TestCase):
def test_get_unique_axis0(self):
data = np.random.randint(0, 100, size=(100000, 3))
data = np.concatenate((data, data))
numpy_unique_res = np.unique(data, axis=0)
get_unique_axis0_res = get_unique_axis0(data)
self.assertEqual(np.array_equal(
np.sort(numpy_unique_res, axis=0), np.sort(get_unique_axis0_res, axis=0),
), True)
if __name__ == '__main__':
unittest.main() |