File size: 7,313 Bytes
3f9c56c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
import warnings

from annotator.mmpkg.mmcv.fileio import FileClient
from ..dist_utils import allreduce_params, master_only
from .hook import HOOKS, Hook


@HOOKS.register_module()
class CheckpointHook(Hook):
    """Save checkpoints periodically.

    Args:
        interval (int): The saving period. If ``by_epoch=True``, interval
            indicates epochs, otherwise it indicates iterations.
            Default: -1, which means "never".
        by_epoch (bool): Saving checkpoints by epoch or by iteration.
            Default: True.
        save_optimizer (bool): Whether to save optimizer state_dict in the
            checkpoint. It is usually used for resuming experiments.
            Default: True.
        out_dir (str, optional): The root directory to save checkpoints. If not
            specified, ``runner.work_dir`` will be used by default. If
            specified, the ``out_dir`` will be the concatenation of ``out_dir``
            and the last level directory of ``runner.work_dir``.
            `Changed in version 1.3.16.`
        max_keep_ckpts (int, optional): The maximum checkpoints to keep.
            In some cases we want only the latest few checkpoints and would
            like to delete old ones to save the disk space.
            Default: -1, which means unlimited.
        save_last (bool, optional): Whether to force the last checkpoint to be
            saved regardless of interval. Default: True.
        sync_buffer (bool, optional): Whether to synchronize buffers in
            different gpus. Default: False.
        file_client_args (dict, optional): Arguments to instantiate a
            FileClient. See :class:`mmcv.fileio.FileClient` for details.
            Default: None.
            `New in version 1.3.16.`

    .. warning::
        Before v1.3.16, the ``out_dir`` argument indicates the path where the
        checkpoint is stored. However, since v1.3.16, ``out_dir`` indicates the
        root directory and the final path to save checkpoint is the
        concatenation of ``out_dir`` and the last level directory of
        ``runner.work_dir``. Suppose the value of ``out_dir`` is "/path/of/A"
        and the value of ``runner.work_dir`` is "/path/of/B", then the final
        path will be "/path/of/A/B".
    """

    def __init__(self,
                 interval=-1,
                 by_epoch=True,
                 save_optimizer=True,
                 out_dir=None,
                 max_keep_ckpts=-1,
                 save_last=True,
                 sync_buffer=False,
                 file_client_args=None,
                 **kwargs):
        self.interval = interval
        self.by_epoch = by_epoch
        self.save_optimizer = save_optimizer
        self.out_dir = out_dir
        self.max_keep_ckpts = max_keep_ckpts
        self.save_last = save_last
        self.args = kwargs
        self.sync_buffer = sync_buffer
        self.file_client_args = file_client_args

    def before_run(self, runner):
        if not self.out_dir:
            self.out_dir = runner.work_dir

        self.file_client = FileClient.infer_client(self.file_client_args,
                                                   self.out_dir)

        # if `self.out_dir` is not equal to `runner.work_dir`, it means that
        # `self.out_dir` is set so the final `self.out_dir` is the
        # concatenation of `self.out_dir` and the last level directory of
        # `runner.work_dir`
        if self.out_dir != runner.work_dir:
            basename = osp.basename(runner.work_dir.rstrip(osp.sep))
            self.out_dir = self.file_client.join_path(self.out_dir, basename)

        runner.logger.info((f'Checkpoints will be saved to {self.out_dir} by '
                            f'{self.file_client.name}.'))

        # disable the create_symlink option because some file backends do not
        # allow to create a symlink
        if 'create_symlink' in self.args:
            if self.args[
                    'create_symlink'] and not self.file_client.allow_symlink:
                self.args['create_symlink'] = False
                warnings.warn(
                    ('create_symlink is set as True by the user but is changed'
                     'to be False because creating symbolic link is not '
                     f'allowed in {self.file_client.name}'))
        else:
            self.args['create_symlink'] = self.file_client.allow_symlink

    def after_train_epoch(self, runner):
        if not self.by_epoch:
            return

        # save checkpoint for following cases:
        # 1. every ``self.interval`` epochs
        # 2. reach the last epoch of training
        if self.every_n_epochs(
                runner, self.interval) or (self.save_last
                                           and self.is_last_epoch(runner)):
            runner.logger.info(
                f'Saving checkpoint at {runner.epoch + 1} epochs')
            if self.sync_buffer:
                allreduce_params(runner.model.buffers())
            self._save_checkpoint(runner)

    @master_only
    def _save_checkpoint(self, runner):
        """Save the current checkpoint and delete unwanted checkpoint."""
        runner.save_checkpoint(
            self.out_dir, save_optimizer=self.save_optimizer, **self.args)
        if runner.meta is not None:
            if self.by_epoch:
                cur_ckpt_filename = self.args.get(
                    'filename_tmpl', 'epoch_{}.pth').format(runner.epoch + 1)
            else:
                cur_ckpt_filename = self.args.get(
                    'filename_tmpl', 'iter_{}.pth').format(runner.iter + 1)
            runner.meta.setdefault('hook_msgs', dict())
            runner.meta['hook_msgs']['last_ckpt'] = self.file_client.join_path(
                self.out_dir, cur_ckpt_filename)
        # remove other checkpoints
        if self.max_keep_ckpts > 0:
            if self.by_epoch:
                name = 'epoch_{}.pth'
                current_ckpt = runner.epoch + 1
            else:
                name = 'iter_{}.pth'
                current_ckpt = runner.iter + 1
            redundant_ckpts = range(
                current_ckpt - self.max_keep_ckpts * self.interval, 0,
                -self.interval)
            filename_tmpl = self.args.get('filename_tmpl', name)
            for _step in redundant_ckpts:
                ckpt_path = self.file_client.join_path(
                    self.out_dir, filename_tmpl.format(_step))
                if self.file_client.isfile(ckpt_path):
                    self.file_client.remove(ckpt_path)
                else:
                    break

    def after_train_iter(self, runner):
        if self.by_epoch:
            return

        # save checkpoint for following cases:
        # 1. every ``self.interval`` iterations
        # 2. reach the last iteration of training
        if self.every_n_iters(
                runner, self.interval) or (self.save_last
                                           and self.is_last_iter(runner)):
            runner.logger.info(
                f'Saving checkpoint at {runner.iter + 1} iterations')
            if self.sync_buffer:
                allreduce_params(runner.model.buffers())
            self._save_checkpoint(runner)