Spaces:
Paused
Paused
File size: 9,678 Bytes
3f9c56c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
import os
import sys
import torch
import torch.nn as nn
import torch.utils.model_zoo as model_zoo
from torch.nn import functional as F
class BlockTypeA(nn.Module):
def __init__(self, in_c1, in_c2, out_c1, out_c2, upscale = True):
super(BlockTypeA, self).__init__()
self.conv1 = nn.Sequential(
nn.Conv2d(in_c2, out_c2, kernel_size=1),
nn.BatchNorm2d(out_c2),
nn.ReLU(inplace=True)
)
self.conv2 = nn.Sequential(
nn.Conv2d(in_c1, out_c1, kernel_size=1),
nn.BatchNorm2d(out_c1),
nn.ReLU(inplace=True)
)
self.upscale = upscale
def forward(self, a, b):
b = self.conv1(b)
a = self.conv2(a)
if self.upscale:
b = F.interpolate(b, scale_factor=2.0, mode='bilinear', align_corners=True)
return torch.cat((a, b), dim=1)
class BlockTypeB(nn.Module):
def __init__(self, in_c, out_c):
super(BlockTypeB, self).__init__()
self.conv1 = nn.Sequential(
nn.Conv2d(in_c, in_c, kernel_size=3, padding=1),
nn.BatchNorm2d(in_c),
nn.ReLU()
)
self.conv2 = nn.Sequential(
nn.Conv2d(in_c, out_c, kernel_size=3, padding=1),
nn.BatchNorm2d(out_c),
nn.ReLU()
)
def forward(self, x):
x = self.conv1(x) + x
x = self.conv2(x)
return x
class BlockTypeC(nn.Module):
def __init__(self, in_c, out_c):
super(BlockTypeC, self).__init__()
self.conv1 = nn.Sequential(
nn.Conv2d(in_c, in_c, kernel_size=3, padding=5, dilation=5),
nn.BatchNorm2d(in_c),
nn.ReLU()
)
self.conv2 = nn.Sequential(
nn.Conv2d(in_c, in_c, kernel_size=3, padding=1),
nn.BatchNorm2d(in_c),
nn.ReLU()
)
self.conv3 = nn.Conv2d(in_c, out_c, kernel_size=1)
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = self.conv3(x)
return x
def _make_divisible(v, divisor, min_value=None):
"""
This function is taken from the original tf repo.
It ensures that all layers have a channel number that is divisible by 8
It can be seen here:
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
:param v:
:param divisor:
:param min_value:
:return:
"""
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_v < 0.9 * v:
new_v += divisor
return new_v
class ConvBNReLU(nn.Sequential):
def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1):
self.channel_pad = out_planes - in_planes
self.stride = stride
#padding = (kernel_size - 1) // 2
# TFLite uses slightly different padding than PyTorch
if stride == 2:
padding = 0
else:
padding = (kernel_size - 1) // 2
super(ConvBNReLU, self).__init__(
nn.Conv2d(in_planes, out_planes, kernel_size, stride, padding, groups=groups, bias=False),
nn.BatchNorm2d(out_planes),
nn.ReLU6(inplace=True)
)
self.max_pool = nn.MaxPool2d(kernel_size=stride, stride=stride)
def forward(self, x):
# TFLite uses different padding
if self.stride == 2:
x = F.pad(x, (0, 1, 0, 1), "constant", 0)
#print(x.shape)
for module in self:
if not isinstance(module, nn.MaxPool2d):
x = module(x)
return x
class InvertedResidual(nn.Module):
def __init__(self, inp, oup, stride, expand_ratio):
super(InvertedResidual, self).__init__()
self.stride = stride
assert stride in [1, 2]
hidden_dim = int(round(inp * expand_ratio))
self.use_res_connect = self.stride == 1 and inp == oup
layers = []
if expand_ratio != 1:
# pw
layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1))
layers.extend([
# dw
ConvBNReLU(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim),
# pw-linear
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
nn.BatchNorm2d(oup),
])
self.conv = nn.Sequential(*layers)
def forward(self, x):
if self.use_res_connect:
return x + self.conv(x)
else:
return self.conv(x)
class MobileNetV2(nn.Module):
def __init__(self, pretrained=True):
"""
MobileNet V2 main class
Args:
num_classes (int): Number of classes
width_mult (float): Width multiplier - adjusts number of channels in each layer by this amount
inverted_residual_setting: Network structure
round_nearest (int): Round the number of channels in each layer to be a multiple of this number
Set to 1 to turn off rounding
block: Module specifying inverted residual building block for mobilenet
"""
super(MobileNetV2, self).__init__()
block = InvertedResidual
input_channel = 32
last_channel = 1280
width_mult = 1.0
round_nearest = 8
inverted_residual_setting = [
# t, c, n, s
[1, 16, 1, 1],
[6, 24, 2, 2],
[6, 32, 3, 2],
[6, 64, 4, 2],
[6, 96, 3, 1],
#[6, 160, 3, 2],
#[6, 320, 1, 1],
]
# only check the first element, assuming user knows t,c,n,s are required
if len(inverted_residual_setting) == 0 or len(inverted_residual_setting[0]) != 4:
raise ValueError("inverted_residual_setting should be non-empty "
"or a 4-element list, got {}".format(inverted_residual_setting))
# building first layer
input_channel = _make_divisible(input_channel * width_mult, round_nearest)
self.last_channel = _make_divisible(last_channel * max(1.0, width_mult), round_nearest)
features = [ConvBNReLU(4, input_channel, stride=2)]
# building inverted residual blocks
for t, c, n, s in inverted_residual_setting:
output_channel = _make_divisible(c * width_mult, round_nearest)
for i in range(n):
stride = s if i == 0 else 1
features.append(block(input_channel, output_channel, stride, expand_ratio=t))
input_channel = output_channel
self.features = nn.Sequential(*features)
self.fpn_selected = [1, 3, 6, 10, 13]
# weight initialization
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, nn.BatchNorm2d):
nn.init.ones_(m.weight)
nn.init.zeros_(m.bias)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.zeros_(m.bias)
if pretrained:
self._load_pretrained_model()
def _forward_impl(self, x):
# This exists since TorchScript doesn't support inheritance, so the superclass method
# (this one) needs to have a name other than `forward` that can be accessed in a subclass
fpn_features = []
for i, f in enumerate(self.features):
if i > self.fpn_selected[-1]:
break
x = f(x)
if i in self.fpn_selected:
fpn_features.append(x)
c1, c2, c3, c4, c5 = fpn_features
return c1, c2, c3, c4, c5
def forward(self, x):
return self._forward_impl(x)
def _load_pretrained_model(self):
pretrain_dict = model_zoo.load_url('https://download.pytorch.org/models/mobilenet_v2-b0353104.pth')
model_dict = {}
state_dict = self.state_dict()
for k, v in pretrain_dict.items():
if k in state_dict:
model_dict[k] = v
state_dict.update(model_dict)
self.load_state_dict(state_dict)
class MobileV2_MLSD_Large(nn.Module):
def __init__(self):
super(MobileV2_MLSD_Large, self).__init__()
self.backbone = MobileNetV2(pretrained=False)
## A, B
self.block15 = BlockTypeA(in_c1= 64, in_c2= 96,
out_c1= 64, out_c2=64,
upscale=False)
self.block16 = BlockTypeB(128, 64)
## A, B
self.block17 = BlockTypeA(in_c1 = 32, in_c2 = 64,
out_c1= 64, out_c2= 64)
self.block18 = BlockTypeB(128, 64)
## A, B
self.block19 = BlockTypeA(in_c1=24, in_c2=64,
out_c1=64, out_c2=64)
self.block20 = BlockTypeB(128, 64)
## A, B, C
self.block21 = BlockTypeA(in_c1=16, in_c2=64,
out_c1=64, out_c2=64)
self.block22 = BlockTypeB(128, 64)
self.block23 = BlockTypeC(64, 16)
def forward(self, x):
c1, c2, c3, c4, c5 = self.backbone(x)
x = self.block15(c4, c5)
x = self.block16(x)
x = self.block17(c3, x)
x = self.block18(x)
x = self.block19(c2, x)
x = self.block20(x)
x = self.block21(c1, x)
x = self.block22(x)
x = self.block23(x)
x = x[:, 7:, :, :]
return x |